PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A continuous stable isotope record of last interglacial age from the Bulgarian Cave Orlova Chuka

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Recent research shows that the last interglacial climate was more unstable in comparison to Holocene. Lack of suitable dating techniques and precisely defined absolute age benchmarks is one from main problems for present LIG studies. Therefore many of LIG chronologies base on indirect dating techniques like record alignment strategies. In this context, speleothems are valuable paleoclimate archives because of their capability to be dated by U-series method. In Europe LIG speleothem records are known mostly from western and central part of the continent. In this paper we present a 1,650 mm long stalagmite (ocz-6) from Bulgarian Cave Orlova Chuka. The ocz-6 stalagmite records the period of time ca. 129–112 ka. Ocz-6 stalagmite was analyzed in terms of stable isotopic composition of calcite and trace elements content. All analyzed geochemical proxies point to dynamic changes in the environment during the Last Interglacial time. At the time of interglacial development (129–126.5 ka), ocz-6 records shows systematic change in proportion of moisture delivered from Atlantic source and other sources. The beginning of last interglacial optimum is connected with a rapid change to more humid and warm conditions. During interglacial demise local climate become more dependent from regional settings.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Strony
87--101
Opis fizyczny
Bibliogr. 67 poz., rys., tab.
Twórcy
autor
  • Polish Academy of Sciences, Institute of Geological Sciences, Twarda 51/55, 00-818 Warsaw, Poland
  • Polish Academy of Sciences, Institute of Geological Sciences, Twarda 51/55, 00-818 Warsaw, Poland
  • Polish Academy of Sciences, Institute of Geological Sciences, Twarda 51/55, 00-818 Warsaw, Poland
  • The Czech Academy of Sciences, Institute of Geology, Rozvojova 269, CZ-165 00 Prague, Czech Republic
Bibliografia
  • 1. Bar-Matthews M, Ayalon A, Gilmour M, Matthews A and Hawkesworth C, 2003. Sea-land oxygen isotopic relationships from planktonic foraminifera and speleothems in the Eastern Mediterranean region and their implication for paleorainfall during interglacial intervals. Geochimica et Cosmochimica Acta 67: 3181–3199, DOI 10.1016/S0016-7037(02)01031-1.
  • 2. Boch R, Cheng H, Spotl C, Edwards RL, Wang X and Hauselmann P, 2011. NALPS: a precisely dated European climate record 120–60 ka. Climate of the Past 7: 1247–1259, DOI 10.5194/cp-7-1247- 2011.
  • 3. Chappellaz J, Brook E, Blunier T and Malaize B, 1997. CH4 and δ18O of O2 records from Antarctic and Greenland ice: A clue for stratigraphic disturbance in the bottom part of the Greenland Ice Core Project and the Greenland Ice Sheet Project 2 ice cores. Journal of Geophysical Research 102: 26547–26557, DOI 10.1029/97JC00164.
  • 4. Cheng H, Edwards RL, Broecker WS, Denton GH, Kong X, Wang Y, Zhang R and Wang X, 2009. Ice age terminations. Science 326: 248–252, DOI 10.1126/science.1177840.
  • 5. Cheng H, Edwards RL, Shen CC, Polyak VJ, Asmerom Y, Woodhead J, Hellstrom J, Wang Y, Kong X, Spotl C, Wang X and Alexander EC, 2013. Improvements in 230Th dating, 230Th and 234U halflife values, and UeTh isotopic measurements by multi-collector inductively coupled plasma mass spectrometry. Earth and Planetary Science Letters 371–372: 82–91, DOI 10.1016/j.epsl.2013.04.006.
  • 6. Cleveland WS, 1979. Robust locally weighted regression and smoothing scatterplots. Journal of the American Statistical Association 74(368): 829–836, DOI 10.2307/2286407.
  • 7. Couchoud I, Genty D, Hoffmann DL, Drysdale R and Blamart D, 2009. Millennial scale climate variability during the Last Interglacial recorded in a speleothem from South-western France. Quaternary Science Reviews 28: 3263–3274, DOI 10.1016/j.quascirev.2009.08.014.
  • 8. Dansgaard W, 1964. Stable isotopes in precipitation. Tellus 16: 438– 468, DOI 10.1111/j.2153-3490.1964.tb00181.x.
  • 9. Darling WG, 2004. Hydrological factors in the interpretation of stable isotopic proxy data present and past: a European Perspective. Quaternary Science Reviews 23: 743–770, DOI 10.1016/j.quascirev.2003.06.016.
  • 10. Davis BAS and Brewer S, 2008. Orbital forcing and role of the latitudinal insolation/temperature gradient. Climate Dynamics 32: 143– 165, DOI 10.1007/s00382-008-0480-9.
  • 11. Demeny A, Kern Z, Czuppon G, Nemeth A, Leel-Ossy S, Siklosy Z, Lin K, Hsun-Ming Hu, Chuan-Chou Shen, Vennemann TW and Haszpra L, 2017. Stable isotope compositions of speleothems from the last interglaciale Spatial patterns of climate fluctuations in Europe. Quaternary Science Reviews 161: 68–80, DOI 10.1016/j.quascirev.2017.02.012.
  • 12. Dorale JA, Edwards RL, Ito E and Gonzalez LA, 1998. Climate and vegetation history of the midcontinent from 75 to 25 ka: a speleothem record from Crevice Cave, Missouri, USA. Science 282: 1871–1874, DOI 10.1126/science.282.5395.1871.
  • 13. Dorale JA and Liu Z, 2009. Limitations of Hendy Test criteria in judging the paleoclimatic suitability of speleothems and the need for replication. Journal of cave and karst studies 71(1): 73–80, DOI 10.1.1.551.9215.
  • 14. Dragusin V, Balan S, Blamart D, Forray FL, Marin C, Mirea IC, Viorica N, Persoiu A, Tirla ML, Tudorache A and Vlaicu M, 2017. Transfer of environmental signals from surface to the underground at Ascunsa Cave, Romania. Hydrology and Earth System Sciences 21: 5357-5373, DOI 10.5194/hess-2016-625.
  • 15. Drysdale RN, Hellstrom JC, Zanchetta G, Fallick AE, Sanchez-Goni MF, Couchoud I, McDonald J, Maas R, Lohmann G and Isola I, 2009. Evidence for obliquity forcing of glacial termination II. Science 325: 1527–1531, DOI 10.1126/science.1170371.
  • 16. Drysdale RN, Zanchetta G, Hellstrom JC, Fallick AE, McDonald J and Cartwright I, 2007. Stalagmite evidence for the precise timing of North Atlantic cold events during the early last glacial. Geology 35: 77–80, DOI 10.1130/G23161A.1.
  • 17. Drysdale RN, Zanchetta G, Hellstrom JC, Fallick AE and Zhao J, 2005. Stalagmite evidence for the onset of the Last Interglacial in southern Europe at 129 ± 1 ka. Geophysical Research Letters 32: L24708, DOI 10.1029/2005GL024658.
  • 18. Dutton A and Lambeck K, 2012. Ice volume and sea level during the last interglacial. Science 337: 216 – 219, DOI 10.1126/science.1205749.
  • 19. Eggins MS, Woodhead DJ, Kinsley JPL, Mortimer EG, Sylvester P, McCulloch TM, Hergt JM and Handler RM, 1997. A simple method for the precise determination of ≥ 40 trace elements in geological samples by ICPMS using enriched isotope internal standardization. Chemical Geology 134(4): 311–326, DOI 10.1016/S0009- 2541(96)00100-3.
  • 20. Evlogiev J, 2000. The Quaternary in Northeast Bulgaria. Review of the Bulgarian Geological Society 61: 1–3: 3–25. (In Bulgarian, Abstract in English).
  • 21. Evlogiev JP, Karachorov M and Todorov DH, 1997. Study of the genesis of fractures in the Orlova Chuka cave, Rousse region. Geology and Hydrogeology 24: 33–39 (In Bulgarian, Abstract in English).
  • 22. Fairchild IJ and Baker A, 2012. Speleothem Science: From Process to Past Environments. Wiley-Blackwell 432 ISBN:9781405196208.
  • 23. Frisia S, 2015. Microstratigraphic logging of calcite fabrics in speleothems as tool for palaeoclimate studies. International Journal of Speleology 44: 1–16, DOI 10.5038/1827-806X.44.1.1.
  • 24. Frisia S, Borsato A, Preto N and McDermott F, 2003. Late Holocene annual growth in three Alpine stalagmites records the influence of solar activity and the North Atlantic Oscillation on winter climate. Earth and Planetary Science Letters 216(3): 411–424, DOI 10.1016/S0012-821X(03)00515-6.
  • 25. Gascoyne M, 1992. Palaeoclimate determination from cave calcite deposits. Quaternary Science Reviews 11: 609–632, DOI 10.1016/0277-3791(92)90074-I.
  • 26. Geilert S, Vroon PZ, Roerdink DL, van Cappellen P and van Bergen, MJ, 2014. Silicon isotope fractionation during abiotic silica precipitation at low temperatures: Inferences from flow-through experiments, Geochimica et Cosmochimica Acta 142: 95–114, DOI 10.1016/j.gca.2014.07.003.
  • 27. Genty D, Verheyden S and Wainer K, 2013. Speleothem records over the last interglacial. PAGES News 21: 24–25, DOI 10.22498/pages.21.1.24.
  • 28. Govin A, Capron E, Tzedakis PC, Verheyden S, Ghaleb B, HillaireMarcel C, St-Onge G, StonerJS, Bassinot F, Bazin L, Blunier T, Combourieu-Nebout N, Ouahabi AE, Genty D, Gersonde R, Jimenez-Amat P, Landais A, Martrat B, Masson-Delmotte V, Parrenin F, Seidenkrantz MS, Veres D, Waelbroeck C and Zahn R, 2015. Sequence of events from the onset to the demise of the Last Interglacial: Evaluating strengths and limitations of chronologies used in climatic archives. Quaternary Science Reviews 129: 1–36, DOI 10.1016/j.quascirev.2015.09.018.
  • 29. Hellstrom J, 2006. U–Th dating of speleothems with high initial 230Th using stratigraphical constraint. Quaternary Geochronology 1(4): 289–295, DOI 10.1016/j.quageo.2007.01.004.
  • 30. Hendy CH, 1971. The isotopic geochemistry of speleothems - I. The calculation of the effects of different modes of formation on the isotopic composition of speleothems and their applicability as palaeoclimatic indicators. Geochimica et Cosmochimica Acta 35(8): 801–824, DOI 10.1016/0016-7037(71)90127-X.
  • 31. Hendy CH and Wilson TA, 1968. Palaeoclimatic Data from Speleothems. Nature 219: 48–51, DOI 10.1038/219048a0.
  • 32. Hercman H and Pawlak J, 2012. MOD-AGE: An age-depth model construction algorithm. Quaternary Geochronology 12: 1–10, DOI 10.1016/j.quageo.2012.05.003.
  • 33. Holden EN, 1990. Total half-lives for selected nuclides. Pure and Applied Chemistry 62(5): 941–958, DOI 10.1351/pac199062050941.
  • 34. Holzkamper S, Mangini A, Spotl C and Mudelsee M, 2004. Timing and progression of the last Interglacial derived from a high Alpine stalagmite. Geophysical Research Letters 31: L07201, DOI 10.1029/2003GL019112.
  • 35. Jaffey AH, Flynn KF, Glendenin LE, Bentley WC and Essling AM, 1971. Precision measurements of half-lives and specific activities of 235U and 238U. Physical Reviews C4: 1889–1906, DOI 10.1103/PhysRevC.4.1889.
  • 36. Kandiano ES, Bauch HA and Fahl K, 2014. Last interglacial surface water structure in the western Mediterranean (Balearic) Sea: climatic variability and link between low and high latitudes. Global and Planetary Change 123: 67–76, DOI 10.1016/j.gloplacha.2014.10.004.
  • 37. Lachniet MS, 2006. Climatic and environmental controls on speleothem oxygen-isotope values. Quaternary Science Reviews 28: 412–432, DOI 10.1016/j.quascirev.2008.10.021.
  • 38. Landais A, Dreyfus G, Capron E, Jouzel J, Masson-Delmotte V, Roche DM, Prie, F, Caillon N, Chappellaz J, Leuenberger M, Lourantou A, Parrenin F, Raynaud D and Teste G, 2013. Two-phase change in CO2, Antarctic temperature and global climate during Termination II. Nature Geoscience 6: 1062–1065, DOI 10.1038/ngeo1985.
  • 39. Lauritzen SE and Onac BP, 1999. Isotopic stratigraphy of a last interglacial stalagmite from the Northwestern Romania: Correlation with the Deep-sea record and Northern-Latitude speleothem. Journal of Cave and Karst Studies 61(1): 22–30.
  • 40. Linge, H, Lauritzen SE and Lundberg J, 2001. Stable isotope stratigraphy of a late last interglacial speleothem from Rana, northern Norway. Quaternary Research 56: 155–164, DOI 10.1006/qres.2001.2254.
  • 41. Malcheva K, Gocheva A and Chervenkov H, 2015. Winter Circulation Conditions over the Bulgaria. 15th International Multidisciplinary Scientific GeoConference SGEM 2015, Book4: 1129–1136, DOI 10.5593/SGEM2015/B41/S19.145.
  • 42. Mangini A, Spotl C and Verdes P, 2005. Reconstruction of temperature in the Central Alps during the past 2000 yr from a δ18O stalagmite record. Earth and Planetary Science Letters 235: 741–751, DOI 10.1016/j.epsl.2005.05.010.
  • 43. Martinson DG, Pisias NG, Hays JD, Imbrie J, Moore Jr, TC and Shackleton NJ, 1987. Age dating and the orbital theory of the ice ages: development of a high-resolution 0 to 300,000-year chronostratigraphy. Quaternary Research 27: 1–29, DOI 10.1016/0033- 5894(87)90046-9.
  • 44. Masson-Delmotte V, Schulz M, Abe-Ouchi A, Beer J, Ganopolski A, Gonzalez Rouco JF, Jansen E, Lambeck K, Luterbacher J, Naish T, Osborn T, Otto-Bliesner B, Quinn T, Ramesh R, Rojas M, Shao X, Timmermann A, 2013. Information from paleoclimate archives. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM, Eds, Climate Change 2013: the Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA: 383–464 (Chapter 5).
  • 45. Masson-Delmotte V, Stenni B, Pol K, Braconnot P, Cattani O, Falourd S, Kageyama M, Jouzel J, Landais A, Minster B, Barnola JM, Chappellaz J, Krinner G, Johnsen S, Rothlisberger R, Hansen J, Mikolajewicz U, Otto-Bliesner B, 2010. EPICA Dome C record of glacial and interglacial intensities. Quaternary Science Reviews 29: 113–128, DOI 10.1016/j.quascirev.2009.09.030.
  • 46. Meyer MC, Spotl C, Mangini A, 2008. The demise of the Last Interglacial recorded in isotopically dated speleothems from the Alps. Quaternary Science Reviews 27: 476–496, DOI 10.1016/j.quascirev.2007.11.005.
  • 47. Milner AM, MüllerUC., Roucoux KH, Collier RE, Pross J, Kalaitzidis S, Christanis K and Tzedakis PC, 2013. Environmental variability during the Last Interglacial: a new high-resolutin pollen record from Tenaghi Philippon, Greece. Journal of Quaternary Science 28: 113–117. DOI 10.1002/jqs.2617.
  • 48. Moseley GE, Spotl C, Cheng H, Boch R, Min A and Edwards RL, 2015. Termination-II interstadial/stadial climate change recorded in two stalagmites from the north European Alps. Quaternary Science Reviews 127: 229–239, DOI 10.1016/j.quascirev.2015.07.012.
  • 49. Munoz-García MB, Martín-Chivelet J, Rossi C, Ford DC and Schwarcz HP, 2007. Chronology of Termination II and the Last Interglacial Period in North Spain based on stable isotope records of stalagmites from Cueva del Cobre (Palencia). Journal of Iberian Geology 33: 17–30.
  • 50. Müller UC and Kukla GJ, 2004. North Atlantic Current and European environments during the declining stage of the last interglacial. Geology 32: 1009–1012, DOI 10.1130/G20901.1.
  • 51. Nehme C, Verheyden S, Noble SR, Farrant AR, Sahy D, Hellstrom J, Delannoy JJ, Claeys P, 2015. Reconstruction of MIS 5 climate in the central Levant using a stalagmite from Kanaan Cave. Lebanon. Climate of the Past 11: 1785–1799, DOI 10.5194/cp-11-1785- 2015.
  • 52. Nojarov P, 2018. Factors affecting air temperature in Bulgaria. Theoretical and Applied Climatology 1–16, DOI 10.1007/s00704-018- 2622-2.
  • 53. Oppo DW, McManus JF and Cullen J, 2006. Evolution and demise of the Last Interglacial warmth in the subpolar North Atlantic. Quaternary Science Reviews 25: 3268–3277, DOI 10.1016/j.quascirev.2006.07.006.
  • 54. Otvos EG, 2015. The Last Interglacial Stage: Definitions and marine highstand, North America and Eurasia. Quaternary International 383: 158–173, DOI 10.1016/j.quaint.2014.05.010.
  • 55. Pedersen RA, Langen PL and Vinther BM, 2017. The last interglacial climate: comparing direct and indirect impacts of insolation changes Climate dynamic 48: 3391–3407, DOI 10.1007/s00382- 016-3274-5.
  • 56. Regattieri E, Zanchetta G, Drysdale RN, Isola I, Hellstrom JC and Roncioni A, 2014. A continuous stable isotope record from the penultimate glacial maximum to the Last Interglacial (159–121 ka) from Tana Che Urla Cave (Apuan Alps, central Italy). Quaternary Research 82: 450–461, DOI 10.1016/j.yqres.2014.05.005.
  • 57. Różański K, Araguas-Araguas L and Gonfiantini R, 1993. Isotopic Patterns in Modern Global Precipitation. Climate Change in Continental Isotopic Records 78: 1–36, DOI 10.1029/GM078.
  • 58. Shumilovskikh L, Arz H, Wegwerth A, Fleitmann D, Marret F, Nowaczyk N, Tarasov P and Behling H, 2013. Vegetation and environmental changes in Northern Anatolia between 134 and 119 ka recorded in Black Sea Sediments. Quaternary Research 80(3): 349–360, DOI 10.1016/j.yqres.2013.07.005.
  • 59. Shackleton NJ, 1969. The Last Interglacial in the marine and terrestrial records. Proceedings of the Royal Society B 174: 135–154, DOI 10.1098/rspb.1969.0085.
  • 60. Sirocko F, Seelos K, Schaber K, Rein B, Dreher F, Diehl M, Lehne R, Jager K, Krbetschek M and Degering D, 2005. A Late Eemian Aridity Pulse in central Europe during the last glacial inception. Nature 436: 833–836, DOI 10.1038/nature03905.
  • 61. Stone EJ, Capron E, Lunt DJ, Payne AJ, Singarayer JS, Valdes PJ and Wolff EW, 2016. Impact of meltwater on high-latitude early Last Interglacial climate. Climate of the Past 12: 1919–1932, DOI 10.5194/cp-12-1919-2016.
  • 62. Treble P, Shelley JMG and Chappell J, 2003. Comparison of high resolution sub-annual records of trace elements in a modern (1911–1992) speleothem with instrumental climate data from southwest Australia. Earth and Planetary Science Letters 216: 141-153, DOI 10.1016/S0012-821X(03)00504-1.
  • 63. Turgeon S and Lundberg J, 2001. Chronology of discontinuities and petrology of speleothems as paleoclimatic indicators of the Klamath Moutains, Southwest Oregon, USA. Carbonates and Evaporites 16(2): 153–167, DOI 10.1007/BF03175833.
  • 64. Tzedakis PC, 1994. Vegetation change through glacial—interglacial cycles: a long pollen sequence perspective. Philosophical Transactions of Royal Society Biological Sciences 345(1314), DOI: 10.1098/rstb.1994.0118.
  • 65. Vansteenberge S, Verheyden S, Cheng H, Edwards RL, Keppens E and Claeys P, 2016. Paleoclimate in continental northwestern Europe during the Eemian and early Weichselian (125–97ka): insights from a Belgian speleothem. Climate of the Past 12: 1445–1458, DOI 10.5194/cp-12-1445-2016.
  • 66. Williams PW, Marshall A, Ford DC and Jenkinson AV, 1999. Palaeoclimatic interpretation of stable isotope data from Holocene speleothems of the Waitomo district, North Island, New Zealand. The Holocene 9: 649–657, DOI 10.1191/095968399673119429.
  • 67. Zumbühl A, 2010. History of the Black Sea recorded in stalagmites from Northern Turkey. Master’s Thesis Faculty of Science University of Bern, 1–115.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e112b253-d872-4708-89f8-8d8c95267e9f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.