PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Optimization of process parameters of friction stir welded AA 5083-O aluminum alloy using Response Surface Methodology

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A methodology was exhibited to create the experimental model for assessing the Ultimate Tensile Strength of AA 5083-O aluminum compound which is broadly utilized as a part of boat building industry by Friction Stir Welding (FSW). FSW process parameters, such as: tool rotational speed, welding speed, and axial force were optimized for better results. FSW was completed considering three-component 3-level Box Behnekn Design. Response surface Methodology (RSM) was implemented to obtain the relationship between the FSW process parameters and ultimate Tensile Strength. Analysis of Variance (ANOVA) procedure was utilized to check the aptness of the created model. The FSW process parameters were additionally streamlined utilizing Response Surface Methodology (RSM) to augment tensile strength. The joint welded at a rotational speed of 1100 rpm, a welding speed of 75 mm/min and a pivotal energy of 2.5 t displays higher tensile strength compared with different joints in comparison with other joints.
Rocznik
Strony
851--855
Opis fizyczny
Bibliogr. 18 poz., rys., fot., tab.
Twórcy
autor
  • Mechanical Department, Karunya University, Coimbatore-641114, Tamilnadu, India
  • Kalaivani College of Technology, Coimbatore-641105, Tamilnadu, Coimbatore, India
autor
  • Mechanical Department, Karunya University, Coimbatore-641114, Tamilnadu, India
Bibliografia
  • [1] A.A.M. da Silva, E. Arruti, G. Janeiro, E. Aldanondo, P. Alvarez, and A. Echeverria, “Material flow and mechanical behaviour of dissimilar AA2024-T3 and AA7075-T6 aluminium alloys friction stir welds”, J. Materials and Design 32, 2021-2027 (2011).
  • [2] V.-X. Tran, J. Pan, and T. Pan, “Application of Taguchi approach to optimize of FSSW parameters on joint properties of dissimilar AA2024-T3 and AA5754-H22 aluminum alloys”, Materials and Design 51, 513-521 (2013).
  • [3] B. Li and Y. Shen, “A feasibility research on friction stir welding of a new-typed lap-butt joint of dissimilar Al alloys”, Materials and Design 34, 725-731 (2012).
  • [4] C. Leitão, R. Louro, and D.M. Rodrigues, “Analysis of high temperature plastic behaviour and its relation with weldability in friction stir welding for aluminium alloys AA5083-H111 and A6082-T6”, Materials and Design 37, 402-409 (2012).
  • [5] M. Koilraj, V. Sundareswaran, S. Vijayan, and S.R. Koteswara Rao, “Friction stir welding of dissimilar aluminum alloys AA2219 to AA5083 - optimization of process parameters using Taguchi technique”, Materials and Design 42, 1-7 (2012).
  • [6] J. Grum and J.M. Slabe, “The use of factorial design and response surface methodology for fast determination of optimal heat treatment conditions of different Ni-Co-Mo surfaced layers”, J. Materials Processing Technology 155 (30), 2026-2032 (2004).
  • [7] K. Manonmani, N. Murugan, and G. Buvanasekaran, “Effect of process parameters on the weld bead geometry of laser beam welded stainless steel sheets”, Int. J. Joining Materials 17 (4), 103-109 (2005).
  • [8] M. Balasubramanian, V. Jayabalan, and V. Balasubramanian, “Developing mathematical models to predict tensile properties of pulsed current gas tungsten arc welded Ti-6Al-4V alloy”, Materials and Design 29 (1), 92-97 (2008).
  • [9] P.K. Palani and N. Murugan, “Optimization of weld bead geometry for stainless steel claddings deposited by FCAW”, J. Materials Processing Technology 190 (1), 291-299 (2007).
  • [10] P.K. Palani and N. Murugan“, Sensitivity analysis for process parameters in cladding of stainless steel by flux cored arc welding”, J. Manufacturing Processes 8 (2), 90-100 (2006).
  • [11] T. Hung, M. Okazaki, and K. Suzuki, “Fatigue crack propagation behavior in friction stir welding of AA6063-T5: roles of residual stress and microstructure”, Int. J. Fatigue 43, 23-29 (2012).
  • [12] V. Gunaraj and N. Murugan, “Application of response surface methodology for predicting weld bead quality in submerged arc welding of pipes”, J. Material Processing Technology 88, 266-275 (1999).
  • [13] J. Colligan, J. Paul, J. Konkol, J. Fisher, and P. Joseph, “Friction stir welding demonstrated for combat vehicle construction”, Welding J. 82 (3), 1-6 (2003).
  • [14] K. Elangovan, V. Balasubramanian, and M. Valliappan, “Influences of tool pin profile and axial force on the formation of friction stir processing zone in AA6061 aluminium alloy”, Int. J. Advanced Manufacturing Technology 38, 285-295 (2008).
  • [15] C. Tien and S.W. Lin, “Optimization of process parameters of titanium dioxide films by response surfaces methodology”, Optics Communication 266 (2), 574-581 (2006).
  • [16] R. Karthikeyan and V. Balasubramanian, “Predictions of the optimized friction stir spot welding process parameters for joining AA2024 aluminum alloy using RSM”, Int. J. Advanced Manufacturing Technology 51, 173-183 (2010).
  • [17] Y.C. Chen, H. Liu, and J. Feng, “Friction stir welding characteristics of different heat-treated-state 2219 aluminium alloy plates”, Material Science Engineering A 420(1/2), 21-25 (2006).
  • [18] J.R. Phillip, Taguchi Techniques for Quality Engineering, Mc Graw-Hill, New York 1988.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e10cb0ca-b671-4f32-8ba8-a6683f0f33a9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.