Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Solar energy is considered one of the most dominant renewable energy sources. It can be used to produce electricity through PV panels. Unfortunatly, this technology is subject to limitations. High operating temperature exceeding 25°C, causes the PV panels to overheat, reducing their lifetime and efficiency. Various approaches to PV cooling are used to overcome these challenges.This paper presents a comprehensive overview of different cooling techniques to increase the performance of PV panels. Passive and active PV cooling systems are analysed using air, water, phase change materials (PCMs) and nanofluids as working agents. A review analysis showed that water cooling is better than air cooling. PCMs, which have recently been gaining in popularity, also deserve attention.
Wydawca
Czasopismo
Rocznik
Tom
Strony
47--68
Opis fizyczny
Bibliogr. 38 poz., il. kolor., fot., rys.
Twórcy
autor
- Energy Department, Faculty of Environmental and Energy Engineering, Cracow University of Technology, 31-864, Krakow, Poland
autor
- Energy Department, Faculty of Environmental and Energy Engineering, Cracow University of Technology, 31-864, Krakow, Poland
autor
- Energy Department, Faculty of Environmental and Energy Engineering, Cracow University of Technology, 31-864, Krakow, Poland
Bibliografia
- [1] https://ourworldindata.org/energy (access: 02.12.2022)
- [2] IRENA, Renewable Power Generation Costs in 2021, International Renewable Energy Agency, Abu Dhabi 2022. ISBN 978-92-9260-452-3 (access: 02.12.2022)
- [3] Peng, Z.; Herfatmanesh, M.R.; Liu Y. Cooled solar PV panels for output energy efficiency optimisation. Energy Convers Manag. 2017, 150, 949-955. DOI:10.1016/j.enconman.2017.07.007
- [4] Kasaeian, A.; Khanjari, Y.; Golzari, S.; Mahian, O.; Wongwises, S. Effects of forced convection on the performance of a photovoltaic thermal system: An experimental study. Exp Therm Fluid Sci. 2017, 85, 2, 13-21. DOI:10.1016/j.expthermflusci.2017.02.012
- [5] Baloch, A. A. B.; Bahaidarah, H. M. S.; Gandhidasan, P.; Al-Sulaiman, F.A. Experimental and numerical performance analysis of a converging channel heat exchanger for PV cooling. Energy Convers Manag. 2015, 103, 14-27. DOI:10.1016/j.enconman.2015.06.018
- [6] Grubišić-Čabo, F.; Nižetić, S.; Marco, T. G. Photovoltaic panels: A review of the cooling techniques. Trans Famena 2016, 40, 63-74.
- [7] Noro, M.; Lazzarin, R.; Bagarella, G. Advancements in Hybrid Photovoltaic-thermal Systems: Performance Evaluations and Applications. Energy Procedia 2016, 101, 496-503. DOI:10.1016/j.egypro.2016.11.063
- [8] Kozak-Jagieła E. Modelowanie i badania eksperymentalne wymiany ciepła dla nowego aktywnego układu chłodzenia paneli fotowoltaicznych. 2020.
- [9] Cuce, E.; Bali, T.; Sekucoglu, S. A. Effects of passive cooling on performance of silicon photovoltaic cells. Int. J. Low-Carbon Technol. 2011, 6, 299-308. DOI:10.1093/ijlct/ctr018
- [10] Rajpu, U.J.; Yang, J. Comparison of heat sink and water type PV/T collector for polycrystalline photovoltaic panel cooling. Renew. Energy 2018, 116, 479-491. DOI:10.1016/j.renene.2017.09.090
- [11] Mittelman, G.; Alshare, A.; Davidson, J. H. A model and heat transfer correlation for rooftop integrated photovoltaics with a passive air cooling channel. Sol Energy 2009, 83, 8, 1150-1160. DOI:10.1016/j.solener.2009.01.015
- [12] Amber, K. P.; Akram, W.; Bashir, M.A.; Khan, M.S.; Kousar A. Experimental performance analysis of two different passive cooling techniques for solar photovoltaic installations. J. Therm. Anal. Calorim. 2021, 143, 2355-2366. DOI:10.1007/s10973-020-09883-6
- [13] Najafi, H.; Woodbury, K. A. Optimisation of a cooling system based on Peltier effect for photovoltaic cells. Sol. Energy 2013, 91, 152-160. DOI:10.1016/j.solener.2013.01.026
- [14] Fakouriyan, S.; Saboohi, Y.; Fathi A. Experimental analysis of a cooling system effect on photovoltaic panels' efficiency and its preheating water production. Renew Energy 2019, 134, 1362-1368. DOI:10.1016/j.renene.2018.09.054
- [15] Yang, L.H.; Liang, J-De.; Hsu, C.Y.; Yang, T. H.; Chen, S. L. Enhanced efficiency of photovoltaic panels by integrating a spray cooling system with shallow geothermal energy heat exchanger. Renew. Energy 2019, 134, 970-981. DOI:10.1016/j.renene.2018.11.089
- [16] Wu, S.; Xiong, C. Passive cooling technology for photovoltaic panels for domestic houses. Int. J. Low-Carbon Technol. 2014, 9, 118-126. DOI:10.1093/ijlct/ctu013
- [17] Musiał, M. Zastosowania Materiałów PCM we współpracy z przegrodami transparentnymi. J. Civ. Eng. Environ. Archit. 2017, 64, 15-22. DOI:10.7862/rb.2017.2
- [18] Dwivedi, P.; Sudhakar, K.; Soni, A.; Solomin, E.; Kirpichnikova, I. Advanced cooling techniques of P.V. modules: A state of art. Case Stud. Therm. Eng. 2020, 21, 100674. DOI:10.1016/j.csite.2020.100674
- [19] Hamdan, M.; Shehadeh, M.; Al Aboushi, A.; Hamdan, A.; Abdelhafez, E. Photovoltaic cooling using phase change material Jordan J. Mechan. Ind. Eng. 2018, 12, 3, 167-170.
- [20] Arici, M.; Bilgin, F.; Nižetić, S.; Papadopoulos, A. M. Phase change material based cooling of photovoltaic panel: A simplified numerical model for the optimisation of the phase change material layer and general economic evaluation. J. Clean. Prod. 2018, 189, 738-745. DOI:10.1016/j.jclepro.2018.04.057
- [21] Waqas, A.; Ji, J. Thermal management of conventional PV panel using PCM with movable shutters - A numerical study. Sol. Energy 2017, 158, 797-807. DOI:10.1016/j.solener.2017.10.050
- [22] Klugmann-Radziemska, E.; Wcisło-Kucharek, P. Photovoltaic module temperature stabilization with the use of phase change materials. Sol. Energy 2017, 150, 538-545. DOI:10.1016/j.solener.2017.05.016
- [23] Kiwan, S.; Ahmad, H.; Alkhalidi, A.; Wahib, W.O.; Al-Kouz, W. Photovoltaic Cooling Utilizing Phase Change Materials. E3S Web Conf. 2020, 160, 02004. DOI: 10.1051/e3sconf/202016002004
- [24] Reddy, S.R.; Ebadian, M.A.; Lin, C. A review of PV-T systems: Thermal management and efficiency with single phase cooling. Int. J. Heat Mass Transf. 2015, 91, 861-871. DOI:10.1016/j.ijheatmasstransfer.2015.07.134
- [25] Nižetić, S.; Marinić-Kragić, I.; Grubišić-Čabo, F.; Papadopoulos, A.M.; Xie, G. Analysis of novel passive cooling strategies for free-standing silicon photovoltaic panels. J. Therm. Anal. Calorim. 2020, 141, 163-175. DOI:10.1007/s10973-020-09410-7
- [26] Elminshawy, N.A.S.; Mohamed, A.M.I.; Morad, K.; Elhenawy, Y.; Alrobaian, A.A. Performance of PV Panel Coupled with Geothermal Air Cooling System Subjected to Hot Climatic. Appl. Therm. Eng. 2019, 148, 1-9. DOI: 10.1016/j.applthermaleng.2018.11.027
- [27] Tonui, J.K.; Tripanagnostopoulos, Y. Air-cooled PV/T solar collectors with low cost performance improvements. Sol. Eng. 2007, 81, 498-511. DOI:10.1016/j.solener.2006.08.002
- [28] Rahimi, M.; Valeh-e Sheyda, P.; Parsamoghadam, M.A.; Masahi, M.M.; Alsairafi, A.A. Design of a self-adjusted jet impingement system for cooling of photovoltaic cells. Energy Convers. Manag. 2014, 83, 48-57. DOI:10.1016/j.enconman.2014.03.053
- [29] Arcuri, N.; Reda, F.; De Simone, M. Energy and thermo-fluid-dynamics evaluations of photovoltaic panels cooled by water and air. Sol. Energy 2014, 105, 147-156. DOI:10.1016/j.solener.2014.03.034
- [30] Rahimi, M.; Asadi, M.; Karami, N.; Karimi, E. A comparative study on using single and multi header microchannels in a hybrid PV cell cooling. Energy Convers. Manag. 2015, 101, 1-8. DOI:10.1016/j.enconman.2015.05.034
- [31] Barrau, J.; Rosell, J.; Chemisana, D.; Tadrist, L.; Ibañez, M. Effect of a hybrid jet impingement/micro-channel cooling device on the performance of densely packed PV cells under high concentration. Sol. Energy 2011, 85, 2655-2665. DOI:10.1016/j.solener.2011.08.004
- [32] Farhana, Z.; Irwan, Y.; Azimmi, R.M.N.; Razliana, A.R.N.; Gomesh, N. Experimental investigation of photovoltaic modules cooling system. In Proceedings of the 2012 IEEE Symposium on Computers & Informatics (ISCI), Penang, Malaysia, 18-20 March 2012. DOI:10.1109/ISCI.2012.6222687
- [33] Ali, H.M. Recent advancements in PV cooling and efficiency enhancement integrating phase change materials based systems—A comprehensive review. Sol. Energy 2020, 197, 163-198. DOI:10.1016/j.solener.2019.11.075
- [34] Sardarabadi, M.; Passandideh-Fard, M.; Heris, S.Z. Experimental investigation of the effects of silica/water nanofluid on PV/T (photovoltaic thermal units). Energy 2014, 66, 264-272. DOI:10.1016/j.energy.2014.01.102
- [35] Rostami, Z.; Rahimi, M.; Azimi, N. Using High-Frequency Ultrasound Waves and Nanofluid for Increasing the Efficiency and Cooling Performance of a PV Module. Energy Convers. Manag. 2018, 160, 141-149. DOI:10.1016/j.enconman.2018.01.028
- [36] Dwivedi, P.; Sudhakar, K.; Soni, A.; Solomin, E. Case Studies in Thermal Engineering Advanced cooling techniques of P.V. modules: A state of art. Case Stud. Therm. Eng. 2020, 21, 100674. DOI:10.1016/j.csite.2020.100674
- [37] Díaz, F. A.; Moraga, N. O.; Cabrales, R. C. Computational modeling of a PV-PCM passive cooling system during a day-night cycle at arid and semi-arid climate zones. Energy Convers. Manag. 2022, 270, 116202. DOI:10.1016/j.enconman.2022.116202
- [38] Dörenkämper, M.; Wahed, A.; Kumar, A.; de Jong, M.; Kroon, J.; Reindl, T. The cooling effect of floating PV in two different climate zones: A comparison of field test data from the Netherlands and Singapore. Sol. Energy 2021, 214, 239-247. DOI:10.1016/j.solener.2021.03.051
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e10bb78f-3194-455c-8b36-5b194c329acd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.