PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Self-Consolidation Mechanism of Ti5Si3 Compact Obtained by Electro-Discharge-Sintering Directly from Physically Blended Ti-37.5 At.% Si Powder Mixture

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Characteristics of electro-discharge-sintering of the Ti-37.5at.% Si powder mixture was investigated as a function of the input energy, capacitance, and discharge time without applying any external pressure. A solid bulk of Ti5Si3 was obtained only after in less than 129 μsec by the EDS process. During a discharge, the heat is generated to liquefy and alloy the particles, and which enhances the pinch pressure can condensate them without allowing a formation of pores. Three step processes for the self-consolidation mechanism during EDS are proposed; (a) a physical breakdown of oxide film on elemental as-received powder particles, (b) alloying and densifying the consolidation of powder particles by the pinch pressure, and (c) diffusion of impurities into the consolidated surface.
Twórcy
autor
  • Korea Aerospace University, Department of Materials Engineering, Goyang-Si 10510, Korea
autor
  • Faculty of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul 05000, Korea
autor
  • Faculty of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul 05000, Korea
autor
  • Wonkwang Health Science University, Department of Dental Laboratory, Iksan 54538, Korea
autor
  • Uiduk University, Division of Green Energy Engineering, Kyeongju 38004, Korea
autor
  • Uiduk University, Division of Green Energy Engineering, Kyeongju 38004, Korea
autor
  • Faculty of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul 05000, Korea
Bibliografia
  • [1] H. Abderrazak, F. Turki, F. Schoenstein, M, Abdellaoui, N. Jouini, Ceramics Intern. 39, 5365 (2013).
  • [2] M. Zaken, M. Ramezani, Ceramics Intern. 38, 1353 (2012).
  • [3] F. Delogu, Scripta Mater. 69, 223 (2013).
  • [4] M. Jalaly, M. Bafghi, M. Tamizifar, F. Gotor, Advan. in Appied Ceramics 112, 383 (2013).
  • [5] R. Rosenkranz, G. Frommeyer, W. Smarsly, Mater. Sci. Eng. A 152, 288 (1992).
  • [6] M. Naka, T. Matsui, M. Maeda, H. Mori, Mater. Trans. JIM. 36, 797 (1995).
  • [7] B.R. Krueger, A.H. Mutz, T. Vreeland, Metall. Trans. A 23, 55 (1992).
  • [8] S.C. Deevi, N. Naresh, Mater. Sci. Eng. A 192/193, 604 (1995).
  • [9] Y.J. Jo, Y.H. Kim, Y.H. Jo, J.G. Seong, S.Y. Chang, P.J. Reucroft, S.B. Kim, W.H. Lee, Metals Mater. Intern. 21, 337 (2015).
  • [10] W.H. Lee, Y.J. Jo, Y.H. Kim, Y.H. Jo, J.G. Seong, C.J. Van Tyne, S.Y. Chang, Archives Metall. Mater. 60, 1185 (2015).
  • [11] Y.J. Jo, Y.H. Kim, Y.H. Jo, J.G. Seong, S.Y. Chang, C.J. Van Tyne, W.H. Lee, J. NanoSci. Nanotechnol. 14, 8429 (2014).
  • [12] W. Kim, S.H. Kwak, C.Y. Suh, J.W. Lim, S.W. Cho, I.J. Shon, Res. Chem. Intermed. 39, 2339 (2013).
  • [13] S. Clyens, S.T.S. Al-Hassani, Intern. J. Mech. Sci. 18, 37 (1976).
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e105b68f-4c60-431e-b5ce-32a9e6c8f18f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.