Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper presents and discusses the results of simulation of the current-voltage characteristics of an avalanche photodiode carried out in the SPICE program. The simulations take into account the influence of the directed energy of the electromagnetic field used in modern DEW (Directed-Energy Weapon), in the form of laser optical radiation and HPM (High Power Microwave) radiation, on the characteristics of the photodiode. The calculations were made using the model of the considered diode developed by the authors.
Słowa kluczowe
Rocznik
Tom
Strony
791--795
Opis fizyczny
Bibliogr. 38 poz., rys.
Twórcy
autor
- Gdynia Maritime University
autor
- Gdynia Maritime University
Bibliografia
- [1] Directed Energy Weapons, report GAO-23-106717, May 2023. https://www.gao.gov/assets/gao-23-106717.pdf
- [2] A. De Courcy Wheeler, “Directed Energy Weapons”, Conference Paper, Convention on Certain Conventional Weapons, Geneva, 2017, pp. 1-6.
- [3] D. V. Giri, R. Hoad, and F. Sabath, “Implications of High-Power Electromagnetic (HPEM) Environments on Electronics”, IEEE Electromagnetic Compatibility Magazine, Vol. 9, Q. 2, 2022, pp. 43-50, https://doi.org/10.1109/MEMC.2020.9133238.
- [4] M. Z. Chaari, “High power microwave for knocking out programmable suicide drones”, Journal Security and Defence Quarterly, Vol. 34, Issue 2, 2021, pp. 68-84. https://doi.org/10.35467/sdq/135068
- [5] J. Chmielińska, M. Kuchta, R. Kubacki, M. Dras, and K. Wierny, “Wybrane metody ochrony urządzeń elektronicznych przed bronią elektromagnetyczną” (Selected methods of electronic equipment protection against electromagnetic weapon), Przegląd Elektrotechniczny, R. 92, No. 1/2016, pp. 1-8, https://doi.org/10.15199/48.2016.01.01
- [6] M. Dras, M. Kałuski, and M. Szafrańska, “Introduction to high power microwave as a source of disturbances”, Przegląd Elektrotechniczny, R. 92, No. 2/2016, pp. 23-25, https://doi.org/10.15199/48.2016.02.06
- [7] M. Kuchta, J. Jakubowski, and R. Kubacki, “Determinants of HPEM and HMP signal environmental measurements”, Przegląd Elektrotechniczny, R. 97, No. 12/2020, https://doi.org/10.15199/48.2020.12.45
- [8] M. Todd, “Directed Energy Technologies - Insights paper”, Emerging Disruptive Technology Assessment Symposium, November 2019. https://www.dst.defence.gov.au/sites/default/files/events/documents/Insights%20Paper%20-%20Direct%20Energy%20F1.pdf
- [9] M. Spencer, “Directed Energy Weapons - Playing with Quantum Fire”, Air Power Development Centre, Australia, 2020. https://airpower.airforce.gov.au/sites/default/files/2021-03/BPAF03_Directed-Energy-Weapons.pdf
- [10] M. Kuchta, J. Paś, „Broń elektromagnetyczna - zagrożenia w obiektach budowlanych” (Electromagnetic weapons - threats in building objects), Inżynieria Bezpieczeństwa Obiektów Antropogenicznych, No. 1-2, 2018, pp. 54-58.
- [11] M. Budnarowska, J. Mizeraczyk, and K. Bargieł, “Development of the EM Field in a Shielding Enclosure with Aperture after Interference Caused by a Subnanosecond High-Power Parallelly Polarized EM PlaneWave Pulse”, Energies 2023, 16, 585. https://doi.org/10.3390/en16020585
- [12] E. Zimet, Ch. Mann, “Directed Energy Weapons - Are We There Yet? The Future of DEW Systems and Barriers to Success”, Center for Technology and National Security Policy, National Defense University, Fort Lesley J. McNair, Washington, DC., 2009. https://www.files.ethz.ch/isn/134557/DTP%2062_Directed%20Energy%20Weapons.pdf
- [13] B. Wagner, “Directed Energy: Low Power Weapons on the Rise”, National Defense, Vol. 92, No. 651, 2008, pp. 22-23.
- [14] M. Suhrke, “HPEM Susceptibility of Electronic Equipment and Critical Infrastructures”, Directed Energy Systems Conference, Fraunhofer Institute for Technological Trend Analysis INT, London, 2015.
- [15] D. V. Giri, F. M. Tesche, and C. E. Baum, “An Overview of High-Power Electromagnetic (HPEM) Radiating and Conducting Systems”, URSI Radio Science Bulletin, Vol. 2006, Issue: 318, pp. 6-12.
- [16] A. Larsson, B. Johansson, and S. E. Nyholm, “Radiated Electric Field Strength from High-Power Microwave Systems”, 17th International Zurich Symposium on Electromagnetic Compatibility, 2006, pp. 441-444, https://doi.org/10.1109/EMCZUR.2006.214966
- [17] I. Węgrzecka, M. Węgrzecki, M. Grynglas, J. Bar, A. Uszyński, R. Grodecki, P. Grabiec, S. Krzemiński, and T. Budzyński, “Design and properties of silicon avalanche photodiodes”, Opto-Electronics Review, 12(1), 2004, pp. 95-104.
- [18] F. Zappa, A. Tosi, A. Dalla Mora, and S. Tisa, “SPICE modeling of single photon avalanche diodes”, Sensors and Actuators A: Physical, 153(2009), pp. 197-204. https://doi.org/10.1016/j.sna.2009.05.007
- [19] S. Z. Ahmed, S. Ganguly, Y. Yuan, J. Zheng, Y. Tan, J. C. Campbell, and A. W. Ghosh, “A Physics Based Multiscale Compact Model of p-i-n Avalanche Photodiodes”, Journal of Lightwave Technology, Vol. 39, Issue 11, 2021, pp. 3591-3598, https://doi.org/10.1109/JLT.2021.3068265
- [20] Z. Wei, G. Jin, Y. Tan, and D. Wang, “Experimental study on photodiode damage by millisecond pulse laser irradiation”, Proc. SPIE, Vol. 9671, AOPC 2015: Advances in Laser Technology and Applications. https://doi.org/10.1117/12.2197826
- [21] K. Wang, X. Yu, P. Li, T. Wang, Y. Zhang, and Ch. Li, “Laser-induced damage in a silicon-based photodiode by MHz picosecond laser”, Laser Physics, Vol. 30, Issue 7, id.076002, 2020, https://doi.org/10.1088/1555-6611/ab92aa
- [22] J. Zarębski, J. Dąbrowski, “Electrothermal model of SiC power Schottky diodes”, Przegląd Elektrotechniczny, R. 87, No. 10/2011, pp. 33-38.
- [23] J. Zarębski, J. Dąbrowski, “Non-isothermal Characteristics of SiC Power Schottky Diodes”, International Symposium on Power Electronics, Electrical Drives, Automation and Motion SPEEDAM, Italy, 2008, pp. 1363-1367.
- [24] J. Zarębski, J. Dąbrowski, “D.C. Characteristics of SiC Power Schottky Diodes Modelling in SPICE”, Informacije MIDEM, Vol. 36, No. 3, 2006, pp. 123-126.
- [25] K. Bargieł, D. Bisewski, “Evaluation of accuracy of SiC-JFET macromodel”, Computer, Applications in Electrical Engineering (ZKWE'2018), ITM Web of Conferences, Vol. 19, 01027, https://doi.org/10.1051/itmconf/20181901027
- [26] K. Górecki, J. Dąbrowski, and E. Krac, “SPICE-Aided Modeling of Daily and Seasonal Changes in Properties of the Actual Photovoltaic Installation”, Energies, 2021, 14(19), 6247. https://doi.org/10.3390/en14196247
- [27] K. Górecki, J. Dąbrowski, and E. Krac, “Modeling Solar Cells Operating at Waste Light”, Energies, 2021, 14(10), 2871. https://doi.org/10.3390/en14102871
- [28] J. Patrzyk, D. Bisewski, and J. Zarębski, “Electrothermal Model of SiC Power BJT”, Energies 2020, 13(10), 2617. https://doi.org/10.3390/en13102617
- [29] J. Szelągowska, J. Zarębski, “Measurements and calculations of capacitances of BJT and SJT made of silicon carbide”, ITM Web of Conferences, 19:01026, January 2018, https://doi.org/10.1051/itmconf/20181901026
- [30] K. Górecki, J. Zarębski, W. J. Stepowicz, P. Górecki, D. Bisewski, K. Detka, P. Ptak, J. Dąbrowski, M. Godlewska, K. Bargieł, and J. Szelągowska, “Modelowanie wpływu zewnętrznego pola elektromagnetycznego na charakterystyki wybranych elementów elektronicznych” (Modelling an influence of an external electromagnetic field on characteristics of selected electronic components), Przegląd Elektrotechniczny, R. 95, No. 10/2019, pp.130-133, https://doi.org/10.15199/48.2019.10.29
- [31] J. Zarębski, J. Dąbrowski, “Modelling Silicon Schottky Barrier Diodes with Use of SPICE”, Computer Applications on Electrical Engineering, 2005, pp. 93-101.
- [32] M. B. Wilamowski, R. C. Jaeger, “Computerized Circuit Analysis Using SPICE Programs”, McGraw-Hill Book Company, 1997.
- [33] W. J. Stepowicz, “Elementy Półprzewodnikowe i Układy Scalone”, Wydawnictwo Politechniki Gdańskiej, 1999.
- [34] W. Janke, “Zjawiska termiczne w elementach i układach półprzewodnikowych”, WNT, Warszawa, 1992.
- [35] J. Singh, „Semiconductor Devices. Basic Principles”, John Wiley & Sons, New York, 2001.
- [36] S. Fuada, A. Pratma, and T. Adiono, “Analysis of Received Power Characteristics of Commercial Photodiodes in Indoor Los Channel Visible Light Communication”, International Journal of Advanced Computer Science and Applications, Vol. 8, No. 7, 2017, pp. 164-172. http://dx.doi.org/10.14569/IJACSA.2017.080722
- [37] Datasheet of APD50-8-150 avalanche photodiode: https://www.osioptoelectronics.com/media/pages/products/photodetectors/avalanche-photodiode-apd/apd10-8-150-xxxx/ce3aeedebe-1675100511/apd-series-8-150-datasheet.pdf
- [38] J. Mikołajczyk, Z. Bielecki, M. Bugajski, J. Piotrowski, J. Wojtas, W. Gawron, D. Szabra, and A. Prokopiuk, “Analysis of Free-space Optics Development”, Metrology and Measurement Systems, Vol. 24 (2017), No. 4, pp. 653-674, https://doi.org/10.1515/mms-2017-0060
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e100fdbb-388f-4710-829e-62e785296653
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.