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Abstract

We solve the manufacturing problem of identifying the model statistical parameters en-
suring a satisfactory quality of analog circuits produced in a photolithographic process.
We formalize it in a statistical framework as the problem of inverting the mapping from
the population of the circuit model parameters to the population of the performances.
Both parameters and performances are random. From a sample of the latter population
we want to identify the statistical features of the former that produce a performance dis-
tribution complying with production samples. The key artifact of the solution method we
propose consists of describing the above mapping in terms of a mixture of granular func-
tions, where each is responsible for a fuzzy set within the input-output space, hence for a
cluster therein. The way of synthesizing the whole space as a mixture of these clusters is
learnt directly from the examples. As a result, we have an analytical form of the mapping
that approximates complex Spice models in terms of polynomials in the model parame-
ters, and an implicit expression of the distribution law of the induced performances that
allows a relatively quick and easy management of the model distribution statistical pa-
rameters. This flows into a semiautomatic procedure managing an adaptive composition
of different granular modules to cope with the circuit peculiarities. We check the method

both on real world manufacturing problems and on ad hoc benchmarks.

1 Introduction

A major challenge posed by new deep-
submicron technologies is to design and verify in-
tegrated circuits so as to obtain a high fabrication
yield, i.e. a high proportion of produced circuits
that function properly. By contrast, with a further
shrinking of process technology, the on-chip vari-
ation is getting worse for each technology node
as a result of a prevalence of random effects over
the designed functionality. The main sources of
these effects are the random distributions of dis-
crete dopants and charged defects, the line edge

roughness of the photo resist and the granularity of
the materials [1, 2]. Therefore, production yields
and circuit figures of merit (such as performance,
power, and reliability) have become extremely sen-
sitive to incontrollable statistical process variations.
These random and systematic defects as well as
parametric process variations have a big influence
on the yield of the manufactured circuits, with the
consequence of frequent respinning of the whole
development and manufacturing chain. This leads
to high costs of multiple manufacturing runs and
entails extremely high risks of missing a given mar-
ket window. One way to overcome these draw-
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backs is to implement the DFM/DFY paradigm [3]
where Design for Manufacturability mates Design
for Yield to form a synergistic manufacturing chain
to be dealt with in terms of relationships between
the statistical circuit parameters matching the pro-
duction constraints and performance indicators en-
suring correctly functioning dies. Model parame-
ters take an intermediate location in this chain, so
representing a target of the production process and
the root of the circuit performance. In greater de-
tail, the first requirement for planning circuits is the
availability of a model relating input/output vectors
of the function implemented by the circuit. Meeting
this requirement usually involves two phases aimed
at searching for a couple of analytic relations: the
first between model parameters and circuit perfor-
mances; and the second, which is connected to the
process engineer’s experience, linking both design
and physical circuit parameters as possibly obtained
during production. The final goal is model identifi-
cation, in terms of designating the input and output
parameter values of the analytical relations. Thus,
model parameters identification represents a criti-
cal instance within the general task of the Statisti-
cal Modeling. It is crucial during the circuit design
in order to estimate and take into account the fluc-
tuations that might characterize the electrical be-
havior of the integrated circuits and the manufac-
turing non-idealities. The objective is to allow the
designer to get a clear picture of how the latter re-
act to the model parameters in the actual production
process and, consequently, to grasp a guess on their
variation impact.

We solve this identification problem on the ba-
sis of a huge amount of experimental data collected
during the manufacturing process. In line with pre-
vious works in the literature [4-7], we frame the
problem in terms of random variable transforms -
from model parameter space to performance space
- with the aim of identifying the best distribution
law of the former that induces a satisfactory fulfill-
ment of the performance requisites. In the light of
the recent literature [8], we abandon the simplifying
independence hypothesis between the random com-
ponents of each space (where the mapping from the
former to the latter is ruled by Spice models [9]).
Our specific contributions in this framework are the

following:

— our main artifact is to handle the mapping in
terms of a granular construct based on a fuzzy
partition of the model parameter space. This
allows a manageable interpolation of both the
Spice functions through polynomials and the
performances’ joint distribution law as a mixture
of the distribution laws [10] affecting the single
fuzzy sets;

— moreover, the combined use of function interpo-
lation and statistical parameter identification al-
lows us to be accurate exactly where necessary,
i.e. in the circuit operational domain;

— thirdly, we make use of an adaptive composition
of different granular methods in response to the
different morphology of the function landscape
we want to identify.

In this way we get both a quick and accurate
interpolation of the Spice functions and a satisfac-
tory identification of the statistical parameters that
proves faster and more efficient than other proce-
dures in the literature [11, 6, 12].

The paper is organized as follows. In Section
[2] we explain our procedure to identify the approx-
imation of the Spice model and its adaptation to the
experimental data. Section [3] will be devoted to
describing the procedure as a whole, with particular
emphasis on the choices left open to the user, which
improve flexibility while also allowing recovering
routines. In Section [4]we toss the benefits and lim-
its of this procedure on specific benchmarks in com-
parison to other methods. In the concluding section
we outline a way to improve these results on the
basis of the interpolated performances distribution
that is not constrained to be Gaussian [13].

2 The Model Identification Tools

We formalize the modeling problem in terms
of a mapping g from a random vector X =
(X1,...,X,) ! describing what is commonly de-
noted as model parameters, to a random vector ¥ =

By default, capital letters (such as X,Y) will denote random variables and small letters (x, y) their corresponding realizations;
vectorial versions of the above variables will be denoted through bold symbols (X, Y, x,y). Moreover, the set the realizations belong

to will be described through gothic symbols (X,2)).
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(Y1,...,Y;), representing the performances. The sta-
tistical features of X, such as mean, variance, cor-
relation, etc., constitute its parameter vector Oy,
henceforth considered to be the statistical parameter
of the input variable X. Idem for the parameter vec-
tor Oy. Hence, ¥ = g(X) = (g1(X),...,&(X)), and
we look for a vector 8y such that the corresponding
Oy characterizes a performance population where
P(Y € ﬁy) = o, having denoted with Dy the domain
spanned by the performances which have been mea-
sured in a satisfactory production process and with
o a set probability value. This goal entails the in-
verse problem — find the 8y producing the wanted
Y population — which we solve in the statistical en-
vironment generated by the observed performances
through the following three conceptual blocks (to
be explored in greater depth in the next sections):

I. approximate g through an accurate enough func-
tion that is easy to invert. We will do so by in-
terpolating g in terms of a polynomial in x;

II. statistically invert this function.  Denoting
with £ and V the mean vector and vari-
ance/covariance matrix operators, respectively,
we aim in this step either to have both E[g(X)]
and V[g(X)], as representatives of Oy, very close
to the estimate @y taken from the measured per-
formances, or to reproduce other features of
these data;

III. check that the solution of the inversion prob-
lem actually generates a population satisfying
the condition P(Y € Dy) = o.. We cannot expect
the above probability to be exactly met. Rather,
the proximity to o represents an indicator of the
identification accuracy, in the worst case asking
for a better modeling of the circuit at hand.

2.1 Interpolating a Spice Model

The most common tool for modeling an analog
circuit is represented by the Spice simulator [14].
It consists of a program which, having in input a
textual description of the circuit elements (transis-
tors, resistors, capacitors, etc.) and their connec-
tions, translates this description into nonlinear dif-
ferential equations to be solved using implicit inte-
gration methods, Newton’s method and sparse ma-
trix techniques. A general drawback of Spice — and
circuit simulators in general — is the complexity of

the transfer function it implements to relate physical
parameters to performances which generally find
not analytical forms but only heavy numerical im-
plementations. This hampers intensive exploration
of the performance landscape in search of optimal
parameters. In our paper we bypass this handi-
cap using polynomial approximations. We identify
these polynomials in terms of granular constructs.
Hence we adopt a principled philosophy of con-
sidering the region D, where we expect to set the
model parameters as an aggregate of fuzzy sets in
various respects [15]. In this way we locally in-
terpolate the Spice function g through a polyno-
mial, hence a mixture of monomials that we asso-
ciate to the single fuzzy sets. Many studies show
this interpolation to be feasible, even in the re-
stricted form of using posynomials, i.e. linear com-
bination of monomials through only positive coeffi-
cients [16]. While this constraint is crucial for solv-
ing efficiently convex optimization problems such
as geometric programming [17], for our purposes it
is superfluous. The granular construct we formalize
is the following.

Given a Spice function g mapping from x to
y (the generic component of the performance vec-
tory), we assume the domain D, C R" into which x
ranges to be the support of ¢ fuzzy sets {A1,...,A:},
each pivoting around a monomial my. We consider
this monomial to be a local interpolator that fits g
well in a surrounding of the Ay, centroid. In synthe-
sis, we have g(x) ~ Y7 ux(x)mg(x), where uy(x)
is the membership degree of x to Ax. The degree is
in turn computed as a quadratic function of the shift
between g(x) and my(x).

On the one hand we have one fuzzy partition of
D, for each component of y. On the other hand, we
implement the construct with many simplifications,
in order to meet specific goals. Namely:

— since we look for a polynomial interpolation of
g, we move from point membership functions to
sets, to a monomial membership function to g,
so that g(x) >~ Y{_; uxmi(x). In turn, gy is a sui
generis membership degree, since it may assume
also negative values;

— since for interpolation purposes we do not need
ur(x), we identify the centroids directly with
a hard clustering method based on the same
quadratic shift.
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Here below, we detail these points as follows. We
exploit two nice bonuses of our clustering instance.
On the one hand the training set is constructed by
us; thus it may be as large as we want, being con-
strained only by the computational time required
to run a Spice model on a huge set of instances.
Namely, we focus on a superset of D,, so large
as to be confident of really including the latter,
and uniformly draw m points x,s which we pair
with the y, = g(x,)s computed by Spice. On the
other hand, denoting my(x) = Bkn’}zlx?k’ , if we
work with logarithmic scales, the shifts we con-
sider for the single (say the i-th) component of y,
are the distances between z, = (logx,,logy,) and
the hyperplane hy(z) = wy - z+ by = 0, with wy =
{01, ...,0u } and by = log P, constituting the cen-
troid of A; in an adaptive metric. Indeed, both wy
and by are learnt by the clustering algorithm aimed
at minimizing the sum of the distances of the z,s
from the hyperplanes associated to the clusters they
are assigned to. The procedure we implement is the
following.
Algorithm 1. Adaptive c-means for Mosfet

For a given Spice function g from D, € R" to D, €
Rt

1. Initialization.

1.1. Draw uniformly m points x, € D, and
form the training set T = {(x1,g(x1)),

o (Xms 8(Xm))-
1. Then, for each component y; of g(x)

2.1. Set the number c of clusters.

2.2. Randomly draw a set of ¢ hyperplanes
hi(z) = w - 2+ by each lying in R**!, with
z = (logx,logy;).

2.3. For each z,:

2
2.3.1. compute d(z,,hi(z,)) = (Wk~zr+bk> for

[l

each hy;
2.3.2. assign z, to the cluster Ay affected by
the minimum over k of d(z,,h;(z,));

2.3.3. update wy and by along the gradient of
d(zr,h(zr)).

In this way we obtain for instance the cluster-
ing of a training set drawn in the domains D, =
{Vthy,Tox} and D, = {Vth,Ron}, where Vth, de-
notes the threshold voltage for large range devices,

and Tox the gate oxide thickness of a totally dielec-
tric isolated BicMOS whose performance is mea-
sured in terms of threshold voltage (Vth) and on-
resistance (Ron). We use BSIM3v3.3 as a Spice ver-
sion 3 software simulator [18] to draw the training
set and consider separately 3 clusters in the spaces
{Vthy,Tox,Vth} and {Vthy,Tox,Ron} in logarith-
mic scales, so that the points turn out to be grouped
around 3 planes in each space, as shown in Figure
1.

With the clustering procedure we essentially
learn the exponents o ; through which the x compo-
nents intervene in the various monomials, whereas
the Bxs remain ancillary parameters. Indeed, to get
the polynomial approximation of g(x) we compute
the mentioned sui generis memberships through a
simple quadratic fitting, i.e. by solving w.r.t. the
vector u = {uy,...,u.} the quadratic optimization
problem:

m C n 2
U= argming Z ( Z H ak’) 1)
—1 =1 j=1
where x,; denotes the j-th component of the r-th el-
ement of the training set 7', and ts override B;s. In
Figure 2 we report the polynomials approximating
the Spice relations in the above BicMOS scenario,
together with the output values we sampled to com-
pute them. We mention that, while in Figure 1 we
focused on only three clusters in each picture to bet-
ter render grouped points and related planes, to ob-
tain a satisfactory fitting we partitioned the sampled
points into 15 clusters.

2.2 Identifying the Statistical Parameters
of the Model

With the previous section we are left with a
consolidated model for locally approximating g,
namely

C C n
= Zmik(x) = Z,UikHX?’kj fori=1,...,t
k=1 k=1 j=1

2

Now we use it to solve the inverse problem:

Which statistical features of X ensure a good
coverage of the Y domain spanned by the perfor-
mances measured on a sample of produced dies?

Hiding specific problems connected to inter-
die/intra-die effects [19, 20] we may concretize the
above question in terms of a-folerance regions, i.e.
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Figure 1. Fuzzy clusters associated to output: (a) Vth, and (b) Ron, in logarithmic scales. Bullet color and
radius are a function of cluster membership.
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Figure 2. Polynomial approximation, composed of 15 monomials, associated to output: (a) Vth, and (b)
Ron. Bullets: output data used to compute polynomials.

regions suitably spread around the mean of the per-
formance vector within which we expect to find
the o percent of the performance population. We
look for a Oy defining a Y distribution, via Spice
mapping, with a tolerance region containing a good
percentage (say o = 95%) of the sampled perfor-
mances.

A check of the above percentage is at the ba-
sis of the third conceptual block we listed at the
beginning of this section. We will describe it in
Section 4.1. To find a Oy generating a successful
Y population we use a series of partly alternative
tools in the province of the second block, which we
describe here below. We borrow them from a set of
well reputed techniques that are essentially empiri-
cal. Thus we will devote a large part of the paper to
validating them numerically.

2.2.1 A Suited Interpretation of the Moment
Method.

As an early solution of the problem we rely on
the first and second moments of the target distri-
bution, which are estimated on the basis of a sam-
ple sy of sole Y collected from the production lines

as representatives of properly functioning circuits.
Our goal is to identify the statistical parameters §X
of X that produce through (2) a Y population best
approximating the above first and second order mo-
ments. The lead strategy is incremental, so that we
numerically compute, on the basis of the current in-
stantiation of the candidate solution, parameters and
statistics which do not constitute the direct identifi-
cation target.

In greater detail, X is assumed to be a multi-
dimensional Gaussian variable, so that we identify
it completely through the mean vector vy and the
covariance matrix Xy which we do not constrain
in principle to be diagonal[21]. The analogous vy
and Xy are a function of the former through (2).
Although they could not identify the Y distribu-
tion in full, we are conventionally satisfied when
these functions get numerically close to the esti-
mates of the parameters they compute (directly ob-
tained from sy). Denoting with Vx;,0x;,0x;, and
Px;,» respectively, the mean and standard deviation
of X; and the covariance/correlation between X; and
Xk, the master equations of our method are the fol-
lowing:
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C
Vy, = Z Qi jV My (3)
=1

where Mj; on the right is a short notation of
mix(X), and vy, denotes its mean.

2. Thanks to the approximations

vz ~logvy, Oz~ O0Cyx/Vx, Pz;; = Px;; “)

with & = logX, coming from the Taylor ex-
pansion of respectively Z, (£ —vz)? and (&; —
Vg, )(E; — vg;) around (Vvy,,Vx;) disregarding
others than the second order terms, the rewrit-
ing of Xy reads

2
k,r=1
k<r
GY[/ = Z GMtk SJr (6)
k,r=1
with
n Oy X; Ox,
GM,k VMk Z +2 Z pX,,atk] lkrv
PR et X; KX,
j<r
(7
“ GX O'X
GM,A e = VM VMg, Z azkjazrpr/M vy V (8)
jw=1 Xy

We numerically solve (3) and (5-6) in vx and Xx
when the left members coincide with the target val-
ues of vy and Xy, respectively, and vy, is approxi-
mated with its sample estimate computed on sam-
ples artificially generated with the current values
of the parameters. Solving equations means mini-
mizing the differences between left and right mem-
bers, so that the crucial point is the optimization
method employed. We implemented various algo-
rithms framed into two alternative search philoso-
phies: either stressing a single parameter at a time
of the input distribution, or exploring all directions
jointly. At a higher level, the domain of the mini-
mization algorithm may be either the entire search
space, hence having each component of vy and
Yx as coordinates, or cyclical subspaces singularly
related to mean, variances and correlations of the
questioned input distribution.

The three building blocks are the following.

2.2.2 The Steepest Descent Strategy.

Using the Taylor series expansion limited to
second order[22], we obtain an approximate ex-
pression of the gradient components of vy w.r.t. vy

through
1 02 o
o —+ =]V
- ik j VXj VXj My ( )

Thus we may easily look for the incremental de-
scent on the quadratic error surface accounting
for the difference between computed and observed
means. Expression (9) confirms the scarce sensi-
tivity of the unbiased mean vy, and its gradient as
well, to the second moments, so that we may ex-
pect to obtain an early approximation of the mean
vector to be subsequently refined even for values of
Ox possibly far from the correct ones. Hence the
pseudocode of this tool is reported in the following
Algorithm 2.

Algorithm 2. Gradient descent for vy

For a given Spice function g from D, € R" to D, €
R’ and a sample sy defined on Dy, sounding initial
values for X parameters, and a polynomial fitting of
8

1. for a suitable number of epochs

1.1. for a suitable number of cycles
1.1.1. Generate a (X,Y) sample (sy,s}) with
current parameters

1.1.2. Compute the Y sample mean Vg, and all
X sample statistics needed to compute (9)

1.1.3. Accumulate ,
| Cx.
Ay, = (Vy, = Vy,) Kley Qi ( + ij) VM
j=1,...,n,foreachY component
1.14. Update Vx; = Vx; — TlijAvyl,],
1.2. Update m;; according to a suitable learning

rule

2. Fit g in the neighborhood of the updated vy

The updating of 1, or analogous smoothing expe-
dients such as momentum terms[23], are a criti-
cal point whose management highly affects the ef-
ficiency of the algorithm. As will be shown in a
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moment, the routine may be variously iterated until
a satisfactory result is obtained.

While analogous to the previous task, the iden-
tification of X variances and correlations owns one
additional benefit and one additional drawback.
The former derives from the fact that we may
start with a, possibly well accurate, estimate of the
means. The latter descends from the high interrela-
tions among the target parameters which render the
exploration of the quadratic error landscape trouble-
some and very lengthy.

2.2.3 Identification of Second Order Moments.

An alternative strategy for X second moments
identification is represented by the evolutionary
computation. Given the mentioned computational
length of the gradient descent procedures, algo-
rithms of this family becomes competitive on our
target. Namely, we used Differential Evolution
[24], with specific bounds on the correlation values
to avoid degenerate solutions. The routine pseu-
docode is reported in the following Algorithm 3.

Algorithm 3. Inference of second order moments

For a given Spice function g from D, € R" to D, €
R’ and a sample sy defined on Dy, a polynomial fit-
ting of g, and sounding vy,

1. Generate a (X,Y) sample with current parame-
ters

2. Compute all X and Y sample statistics necessary
to implement (5) to (8)

3. Minimize the square error on the second order
moments through general-purpose optimization
algorithms

4. Update Xy with the best solution found at the
previous step

5. Fit g around vy with the updated Xx

2.2.4 A Brute Force Numerical Variant.

Gradient descent is a very rough local optimiza-
tion procedure. However, rather than embarking
on more sophisticated procedures such as Scaled
Conjugate Gradient (SCG)[25] or the Levenberg-
Marquardt algorithm (LM) [26], we preferred to
move to a still more rudimentary strategy to get rid

of the loose approximations introduced in (3) to (9).
Thus we: i) avoid computing approximate analyti-
cal derivatives, by substituting them with direct nu-
merical computations [27], and ii) adopt the strat-
egy of exploring one component at a time of the
questioned parameter vector, rather than a combina-
tion of them all, until the error descent stops. This
results in a very streamlined version of the Variable
Step Search (VSS) algorithm [28] used to optimize
complex functions such as neural networks error
terms. Spanning numerically one direction at a time
allows us to ask the software to directly identify the
minimum along this direction. The further benefit
of this task is that the function we want to minimize
is analytic, so that the search for the minimum along
one single direction is a very easy task for typical
optimizers, such as the naive Nelder-Mead simplex
method [29] implemented in Mathematica [30]. For
analogous reasons we abandon the evolutionary al-
gorithm in favor of this strategy even for the second
order moment identification. A possible drawback
is that the exploration of the search space one com-
ponent at a time may lead to local minima that are
far from the global one. This is a common draw-
back of local descent strategies. The same holds
for global techniques as well which, as for evolu-
tionary algorithms, do not explore the entire search
space. However, no one may predict what is the
overall overburden, for instance, if we follow either
the negative gradient or simply one of its compo-
nents. Rather, early experimental results seem to
promote the hypothesis that the convergence rate
toward global solutions improves by employing the
latter strategy when we remain in the field of gran-
ular computing [28]. Moreover, the computational
complexity of following a single component is defi-
nitely lower than the one of either descending along
the gradient or evolving a population.

We structured the method in a cyclic way, plus
stopping criterion based on the amount of overall
parameter variation. Each cycle is composed of: i)
an iterative algorithm which circularly visits each
component direction minimizing the identification
error, until no improvement may be achieved over a
given threshold, and ii) a fitting polynomial refresh
on the basis of a Spice sample in the neighborhood
of the current parameter vector. We complete the
routine with a last assessment of the parameters that
we pursue by running jointly on them all a local de-
scent method such as Quasi-Newton procedure in
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one of its many variants [31]. As a conclusion,
we may optionally substitute either Algorithm 2 or
Algorithm 3, or even both, with the following Al-
gorithm 4.

Algorithm 4. Greedy descent for vy (Xx)

For a given Spice function g from D, € R" to D, €
R and a sample sy defined on Dy, sounding initial
values for X parameters, and a polynomial fitting of

g

1 for a suitable number of cycles
1.1. Generate a (X,Y) sample (s,s}) with cur-
rent parameters

1.2. Compute the Y sample mean v}, (sample co-
variance matrix X})

1.3. Compute the minimum m; of (vy — V)2

along any vy, direction, for j =1,...,n (the
minimum m; ; of (Zy — X} )?* along any o; ;
direction, fori,j=1,...,n)

1.4. Select the direction j* (the directions (i*, j*))
whose correspondent m; (m; ;) achieves the
lowest minimum

1.5. Update VX (o j+) with the optimal coordi-
nate computed in step 1.3

2 Run alocal optimization algorithm to reach a lo-
cal optimum

3 Fit g in the neighborhood of the updated vy (Xx)

2.2.5 Fine Tuning Via Reverse Mapping.

Once a good fitting has been realized in the
questioned part of the Spice surface, we may solve
the identification problem in a more direct way by
first inverting the polynomial mapping to obtain the
X sample at the root of the observed Y sample, and
then estimating 0x directly from the sample defined
in the Dy domain. The inversion is almost imme-
diate if it is univocal, i.e., apart from controllable
pathologies, when X and Y have the same num-
ber of components. Otherwise the problem is ei-
ther overconstrained (X components in a number
less than Y components) or underconstrained (op-
posite relation between component numbers). The
first case is avoided by simply discarding exceeding

Y components, possibly retaining the ones that im-
prove the final accuracy and avoid numeric instabil-
ity. The latter calls for a reduction in the number of
questioned X components. Since X follows a mul-
tivariate Gaussian distribution law, by assumption,
we may substitute some components with their con-
ditional values, given the others. In greater detail, if
X is partitioned in (X,X;) with dimensions ¢ and
n —t respectively, from v and X splitted as follows

v = (vi,Vv2) (10)
with dimensions ¢ and n-f respectively
L X2
Y = 11
< Y1 Ix > an

with dimensions 7 X ¢, X (n —1t),(n —t) x t, and
(n—1) x (n—1), respectively, then the distribution
of X| conditional on X, = x; again follows a multi-
variate Gaussian with parameters (V,X), where

Vi+EnIy (x2—Va) (12)
T — X122 X (13)

Ml <
|

the latter representing the Schur complement of
Yy, in X[32]. The further conditioning of X; by
Y (since we are reversing the latter on the former)
still reduces X by a factor § that we may guess from
the comparative scatter of the ¥’ population recon-
structed with the inferred 6y — for instance homo-
geneously set to % for each component in the exper-
iments described in Section 4.

Hence the pseudocode of this part is described
in the following Algorithm 5.

Algorithm 5. Reverse mapping

For a given Spice function g from D, € R" to D, €
R’ and a sample sy defined on Dy, sounding X pa-
rameters, and a polynomial fitting ¢ of g,

1 if n #t then

1.1 if 7 > n then hide  —n components of Y (pos-
sibly according to a suitable optimality crite-
rion)

1.2 if n > t then compute conditional mean and
variance of a subset X; of ¢ components
of X given its complement X, ; = V,_,,
through (12-13)
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2 for each y, € sy

2.1. Get x; = ¢'(y,) obtaining a companion
sample sy

3 Compute vx,Xy on sy

4 Fit g in the neighborhood of the current vy,Xx

3 Profiling the Identification Proce-
dure

The tools we described are in principle non au-
tonomous. Rather we may variously combine them
to get results at different accuracy levels. In Al-
gorithm 6 we propose a procedure to realize these
computational paths. On the one hand the default
sequencing generally leads to a very satisfactory
identification of X parameters. However, since all
steps are local, possibly relying on approximated
optimizers, the procedures allow for both back-
tracking at any step, with possible selection of alter-
native optimization tools, and recycling of the entire
loop in search of better identification of the current
value of the global variables {vyx,Xx}, whenever
necessary.

Algorithm 6. Polynomial identification

For a given Spice function g from D, € R" to D, €
R’, and a sample sy defined on Dj,.

1 Initialization.

1.1. Set sounding X parameters {vx,Xx}

1.2. Fit g polynomially in a D, x D, superset of
sy through Algorithm 1

1.3 if n =t then goto [4.1.]
1.4 if n < t then select n components of ¥ and
goto [4.1.]

2 Mean identification.

2.1. According to your selection
2.1.1a. Identify vx through Algorithm 4 — de-
fault selection
2.1.1b. Identify vy through Algorithm 2 — al-
ternative selection

2.2. if the identification is not satisfactory then
goto either [1.1.] or [2.1.]

3 Variance and correlation identification.

3.1. According to your selection

3.1.1a. Identify X variance and covariance
matrix Xy through Algorithm 4 — default
selection
3.1.1b. Identify X variance and covariance
matrix Xy through Algorithm 3 — alterna-
tive selection
3.2. if the identification is satisfactory then stop,
else goto either [1.1.] or [2.1.]

4 Fine tuning

4.1 if n <t then inverse map sy through Algo-
rithm 5

4.2 if n > t then while the identification is not
satisfactory
4.2.1. Selectt components of X, and compute
their conditional expectations,
4.2.2. inverse map sy through Algorithm 5
4.2.3. compute {vx,Xx}

4.3 if the identification is not satisfactory then
goto either [1.1.] or [2.1.] or [3.1.] or [4.1.]

5 stop

The two pitfalls of this procedure are the poly-
nomial fitting efficacy and the locality of the opti-
mization procedures.

1. In order to constrain the procedure computa-
tional complexity, we stress the use of fitting
polynomials in place of Spice routines. Fitting
polynomials are the root of our inference. How-
ever, their accuracy is local. As mentioned in
the introduction, this is a drawback that reverts
into a benefit provided that we employ them
in a tight surrounding of the parameter values
around which the fitting coefficients have been
computed. Hence we need to frequently regen-
erate the polynomials during the inference pro-
cess. For sure, at the completion of any opti-
mization step, we should use Spice routines to
generate a Y sample starting from a sample s,
drawn from a multivariate Gaussian X with the
inferred parameters, in order to check the true
closeness of the polynomially approximated Y
population to the really observed sample. Then
we use the joint (X,Y) generated sample to re-
fresh the fitting. We might need similar opera-
tions also in intermediate steps of the inference
procedure, namely at each backtracking step, to
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2*device model parameter performance parameter
label description label description
Uo Mobility at nominal temperature
Ao Bulk charge effect coefficient GM conductance
pMOS VTHj Threshold voltage at Vs = 0 for large L IDsAT source drain current
K, First order body effect coefficient VTHj5_25 saturation voltage
Bo: Bulk charge effect coefficient for channel lenght VTHj5_og saturation voltage
Bii Bulk charge effect coefficient for canne width
Uo Mobility at nominal temperature GM conductance
AMOS Vsar Saturation voltage IDsAT source drain current
VTHy Threshold voltage at Vgg = 0 for large L VTHjs5-_25 saturation voltage
K First order body effect coefficient VTHj5_og saturation voltage
Bf Ideal maximum f .
Re den Err?itterl;lesizzlirci Bt HFE Current Gain
nMOS-DIB12 . VA Early Voltage
Is Transport Saturation Current L Collector Current
Vaf Forward Early Voltage ¢

Table 1. Model parameters and performances of the identification problems.

avoid injecting biases in the parameter estima-
tion. Moreover, each identification satisfaction
check is based on a Y population generated us-
ing the current identified parameters and the true
Spice mapping; a comparison of this population
with the original sample sy will decree the satis-
faction degree.

2. Local optimization procedures suffer from the
general drawback of getting stuck in local min-
ima. As for mean estimation, we found this
drawback definitely lighter with Algorithm 4
than with the alternative Algorithms 2 and 3.
However, Algorithm 2 is more robust in general,
so that we gave the user the possibility of using it
in the rare situations where the former fails. As
for the covariance matrix, in devising Algorithm
3 we found use of Differential Evolution method
suitable. However, to avoid degenerate solu-
tions, we prohibit the correlations to take a value
greater than a suitable threshold (actually it is
recommended to avoid values higher than 0.6).
We remark that the pseudocodes of Algorithms
2-4 are specialized on suitable subspaces of the
search space. Nevertheless, in the most difficult
cases we found extremely efficient to jointly ex-
plore the entire search space, specially through
the Algorithm 4. Fine tuning of the above steps
is generally obtained through Algorithm 5 that
we use substantially in a combinatorial scheme.
Having no clear idea of what is the subset of con-
ditional components of X when n > ¢ (or skipped
components of ¥ when n < t) which leads to the
best estimates, we simply check for all subsets.
In the case this scheme proves unbearable be-
cause of large differences between n and ¢, we

could either provide a first guess on a subset of
the whole sample, or at worst use some rules of
thumb to bind the number of subsets.

3. Analogously, we have no assurance about the
convergence of the whole optimization loop.
Therefore the procedure is equipped with recov-
ering routines to store all current solutions, so
that at each time we may select the ones that
prove more convincing in order to either stop
or start a new iteration. No evidence exists, in
particular, that Algorithm 5 always represents an
improvement of the identification obtained with
the sole statistical tools.

We cannot provide in principle an exhaustive
computational complexity analysis of the proce-
dure. Rather, we realize that the single cycles in
each procedure are at most quadratic in the number
of input variables, with the sole exception of the line
optimization routine, whose complexity is well con-
trolled, however, by the optimizer software. Hence,
the parameters that mostly affect (linearly with the
moderate exception of a few cases) the computa-
tional load are: i) the size of the samples used in the
various tasks, ii) the number of iterations through
which we develop the incremental methods, and iii)
the combinatorial scheme in the case that input and
output space have different dimensions. We will
realize the influence of these quantities in the next
section.

4 Numerical Results

The procedure we propose derives from a skill-
ful implementation of granular computing ideas
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[15], however without theoretical proof of effi-
ciency. While no worse from this perspective than
the general literature in the field per se [11], it
needs numerical proof of suitability. To this aim we
basically work with three real world benchmarks
collected by manufacturers and variants devised to
stress the peculiarities of the methods. In Table 1
we describe the benchmarks and the identification
solutions that we found.

In Figure 3 we synthesize their operational ef-
fects.

Namely, the benchmarks refer to:

1. A unipolar pMOS device realized in Hcmos4TZ
technology.

2. A unipolar nMOS device differentiating from
the former for the sign (negative here, posi-
tive there) of the charge of the majority mobile
charge carriers. Spice model and technology are
the same, and performance parameters as well.
However, the domain spanned by the model pa-
rameters is quite different, as will be discussed
shortly.

3. A unipolar nMos circuit realized in DIB12 tech-
nology. DIB technology achieves the full dielec-
tric isolation of devices using SOI substrates by
the integration of the dielectric trench that comes
into contact with the buried oxide layer.

We have different kinds of samples for the var-
ious benchmarks as for both the sample size which
ranges from 14,000 (pMOS and nMOS) to 300
(nMOS-DIB12) and the measures they report: joint
measures of 4 performance parameters in the for-
mer two cases, partially independent measures of
3 performance parameters in the latter, where only
HFE and VA are jointly measured. Taking into
account the model parameters, and recalling the
meaning of ¢ and »n in terms of number of perfor-
mance and model parameters, respectively, both the
sensitivity of the former parameters to the latter and
the different difficulties of the identification tasks
lead us to face in principle one balanced problem
with n =t = 4 (nMOS), and two unbalanced ones
withn=6andt =4 (pMOS) andn =4 andr =3
(nMOS-DIB12). In addition, only 4 of the 6 second
order moments are observed with the third bench-
mark. In particular, the model parameters and the

performances considered for the three devices are
listed in Table 1.

With reference to Table 2, in column §X we re-
port the parameters of the input multivariate Gaus-
sian distribution we identify in the aim of reproduc-
ing the By of the Y population observed through sy.
Of the latter parameter, in the subsequent column
we compare the values 6y computed on the basis of
Ox (referring to a reconstructed distribution — in ital-
ics) with those By computed through the maximum
likelihood estimate from sy (referring to the original
distribution —in bold). As a further accuracy indica-
tor, we will consider tolerance regions in the perfor-
mance space J), i.e. domains that are placed around
the performances centroid and contain a given per-
centage 1 — d of the performance population. The
procedure to build up these regions on the basis of
the identified parameter 0y will be discussed in de-
tail in Section 4.1.. In the last column of Table 2,
headed by (1 —8)/(1 —§), we appreciate the differ-
ence between planned tolerance rate (in bold), as
a function of the identified Y distribution, and ra-
tio of sampled measures found in these regions (in
italics). We consider single values in the table cells
since the results are substantially insensitive to the
random components affecting the procedure, such
as algorithm initialization. Rather, especially with
difficult benchmarks, they may depend on the user
options during the run of the algorithm. Thus, what
we report are the best results we obtain, reckoning
the overall trial time in the computational complex-
ity consideration we will do in Section 4.2.

For a graphical counterpart, in Figure 3 we re-
port the scatterplot of the original ¥ sample and an
analogous one generated through the reconstructed
distribution, both projected on the plane identified
by the two principal components[33] of the origi-
nal distribution. We also draw the intercept of this
plane with a tolerance region containing 90% of the
reconstructed points (hence 6 = 0.1).

An overview of these data looks very satisfac-
tory, registering a relative shift between sample and
identified parameters that is always less than 0.17%
as for the mean values, 45% for the standard de-
viations and 25% for the correlation. The anal-
ogous shift between planned and actual percent-
ages of points inside the tolerance region is always
less than 2%. We distinguish between difficult and
easy benchmarks, where the pMOS sample falls in
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benchmark solution
datset [(n.t)] m 6x by /6y 1 -5/
benchmark 175 ox PX B’y oy Y 1-48
—0.16582
—0.46312
0.933746
—0.41451
0.451486
—0.49665
—(0.835824 0.0118108 —0.287658
—0.35008
233.424 3.63673 0.12573 —0.838496 0.0187507 —0.282512
0.28798 0.01806 ‘D.Pﬂmmﬂ —0.971835 0.0121665 —0.389979 0.946713
0.99185 0.01083 o —0.969196 0.0164674 —0.387441 0.9
pMOS (6,4)(14, 000 ° —0.07056
0.45255 0.03275 0.39330 0.000973318 Q.000029378 —0.254446 0.900398
4.06626 x HO\.U 4.48106 x HO\@ 0 ﬁ.thwA 0.00007472 0.000029348 —0.0727698 0.8
4.67824 x HD|.U 9.00006 x H.O|.m_. D 16367 0.00448103 0.000146626 — 0.367477
o 0.00447346 0.000130486 —0.174543
0.21068
0.900391
0.49711
0.983658
0.22781
0.48312
0.445093
0.395429
0.552391 0.028568 —0.499279
—0.765278 0.550715 0.027T6768 —0.432434
752.395 134.099 —0.467972 0.66383 0.0176982 —0.637969 0.9008
152858.0 9667.22 0.756786 0.664162 0.0173677 —0.640323 0.9
aMos | (4, 4) |14, 000 ° °
0.68184 0.0186854 0.306389 0.00221691 0.0000830626 —0.298401 0.8304
0.521661 0.131933 —0.786377 0.00222077 0.0000619134 —0.271952 0.8
—0.468842 0.0100527 2.000355129 —0.375841
0.0100711 0.000280373 —0.354887
0.92015
0.950419
—0.192107 113.244 6.82099
138.302 8.3859 0.00139749 113.242 6.95918 0.9054
0.67258 0.263238 —0.477207 0.0000654246 4.96031 x 10— 0 —0.490798 0.9
nMOS-DIB12| (4, 3)| 322 18 19 6
5.28102 x 10— 4.14306 x 10— —0.980327 0.00006853275 4.81021 x 10— —0.566678 0.8136
136.319 13.6538 0.167527 110.164 11.1459 0.8
—0.0444712 110.238 11.2166

Table 2. Benchmarks used for testing the proposed procedure and analysis of the identification solution.

ters (indexed by X) and reconstructed

ion parame
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(b) AMOS

(¢) nMOS-DIB12

Figure 3. Comparison between output data and reconstruction provided by our procedure for the devices
listed in Table 1 when projected on the two principal components of the target. Points: reconstructed
population lying within (dark gray) and outside (light gray) 0.90 tolerance region (black curves) identified
by black points. Gray crosses: original target output; black crosses: target output addicted with noise terms
uniformly spread in the discretization range.
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Figure 4. Accuracy of the polynomial approximation versus distance of target points from their mean
computed on: (a) pMOS, and (b) nMOS, through the Mahalanobis metric djy, as for abscissa, and relative
error €, as for ordinate (black curves), together with their polynomial fitting of degree 4 (gray curves).

the first category. Indeed the same percentages re-
ferring to the remaining benchmarks decreases to
0.13%,10% and 9%. In the rest of this section we
will consider these performances both in relation to
the peculiarities of our benchmarks and procedures,
and in contrast with analogous results in the litera-
ture.

4.1 Deepening the Methods

We learn the following lessons from a deeper
analysis of the above experiments.

Polynomial fitting. It is a local procedure which
generates curves that are accurate in a region
centered in the sampled points. This means that,
on the one hand, we need to refresh the fitting
each time the mean of the sample changes no-
tably. On the other hand, the loss of accuracy
with the distance from the center is not dramatic,
since it concerns regions of low probabilities.
Figure 4 plots a typical trend of the accuracy
with the distance from the mean, when the for-
mer is measured according to the relative error
and the latter is computed in terms of the Maha-
lanobis metric. The pictures also report a poly-

nomial fitting of the curves, showing in any case
the adequacy of the polynomial approximation,
provided that a suitable neighborhood of the tar-
get region emerged in the learning stage.

Deterministic versus statistic tools. In prin-
ciple, in the case of balanced samples (n = ¢),
the fitting quality is the sole feature responsible
for the statistical identification. We start with
sounding X parameters and draw a first fit. With
this fit we revert y,s on x,s and estimate the X pa-
rameters directly from the latter sample. How-
ever, the Y sample generated with these X pa-
rameters may not prove satisfactory. Then, we
may start a cycle where we use the latter for gen-
erating another (X,Y) sample that we fit with a
new polynomial, and use the latter for a new re-
verse of the original sy, until we are satisfied.
With ¢ > n we obtain the same back-fitting af-
ter discarding some Y components. With n # ¢
we need to reformulate the problem as discussed
in Section 2.2. In particular, in Figure 5(a) we
report the analogous result of Figure 3(b) when
we remove the third performance parameter in
order to artificially unbalance the identification
problem, getting in any case comparable results
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Figure 5. Robustness of the solution vs. information lack and methods. Same graphs as in Figure 3 when
the third perfomance parameter is unavailable and the moment error minimization is pursued thorugh: (a)
Variable Step Search, and (b) Steepset Gradient Descent coupled with Differential Evolution methods.

on the remaining components (mean relative er-
ror between current and target mean vectors ~
0.3%, on second order moments =~ 3%) denot-
ing a balance between the decrease in the target
difficulty and in the number of available statis-
tics.

While in easy cases statistical tools play the
mentioned ancillary role w.r.t. the determinis-
tic inversion procedure, on the first benchmark
(pMOS) they constitute the sole way of identi-
fying the Y parameters. This is because any at-
tempt to invert sy introduces a deterioration of
the current parameter identification. Thus we
rely on the sole greedy descent routines to get
6)/ in Table 1. Furthermore, this accounts for
the difficulty of the pMOS benchmark. The re-
lated Spice functions are actually so difficult that
the average smoothing introduced by the mo-
ment estimators results into a necessary benefit
to the identification task. From the second to last
column in Table 1 we argue that what is most
responsible for the relatively poor identification
is the correlation between the first and second
component of the performance vector. In turn,
we note that both components are measured in
a coarse discrete scale, while the remaining two
are measured in a continuous scale (actually a
so fine discrete scale to be confused with a con-
tinuous one). This happens also in the second
benchmark (nMOS) but without the same nega-
tive effects. Thus we guess that the loss of accu-
racy in the performance measurements hampers
the identification accuracy only within a certain
threshold.

As a technical remark, the logarithmic scale
transform requested by the clustering Algorithm
1 is not applicable on negative values of either
model or performance parameters, obviously.

This does not constitute a drawback, however,
but just requires a wise management of their ab-
solute values.

Descent method. Of the methods to reduce the
error of the means identification, the most effi-
cient and accurate is the Variable Step Search
descent along single components. The method,
originally structured in a cyclic way, find a suit-
able stopping criterion by measuring the amount
of parameter variation. Namely, we circularly
visit each components by finding a local mini-
mum in the chosen direction (operation which
can be performed analytically in a very efficient
way by general-purpose optimizers [30]), and
adopt a threshold 10> on the relative change
on each direction to abandon the search. Note
that, although no theoretical results guarantee a
fast convergence [28], the computation gener-
ally ends in two cycles. Thanks to the general
speed of above method, we may devote some
extra computational time, in any case not influ-
encing the order of speed factor of the method,
to perform a descent on the overall error surface
for the final assessment of the solution.

We maintain the Steepest Gradient Descent and
the Differential Evolution methods because they
represent alternative procedures which are ro-
bust (hence to be employed in tricky instances)
but less accurate and more computational de-
manding. In Figure 5(b) we represent the same
picture as in Figure 5(a) when using the latter
two alternative identification tools. The accu-
racy are almost the same (relative error = 0.005
and 0.05 respectively for mean and second order
elements), but the running time is approximately
one order greater than the former method’s.

The proper sizing of the tools. We have three
sizing parameters in the numerical experiments:
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the number of model parameters, the number of
fitting monomials, and the size of the generated
samples.

The Spice model has around 100 input variables
(the model parameters) that diminish to 12-13
when we consider the ones that are either tangi-
bly varying during the production and tangibly
influencing the circuit performances with their
variation. However 12 is still a high number,
close to be prohibitive, for the incremental tools
implemented in our procedure. Of course it is
a moderate size of the input of a neural net-
work, such as a multilayer perceptron, which
processes available data incrementally as well.
But with the latter device we are facing very
regular atomic functions, such as sigmoids[34],
possibly in a huge number so that their com-
position may reproduce complex goal functions
[35]. In our case, we work with simple but less
regular atomic functions, the monomials, in a
number that is limited in order to avoid over-
fitting, yet with the same goal of reproducing
complex functions, and with the additional tar-
get of using the fitting to identify the input popu-
lation. As a matter of fact, practitioners look for
3 to 4 model parameters with benchmarks sim-
ilar to ours, typically those proving most sen-
sitive to the performances with standard sensi-
tivity tools (for instance those based on the Ja-
cobi matrix[36]). With the pMOS benchmark
(the difficult instance) we profit from two fur-
ther components to improve our results by about
20% as for the second order moments, getting
exactly the identification we described in Ta-
ble 1. Note that the additional model parame-
ters revert into additional noise in the procedure,
which is the reason why we avoid incrementing
the parameters in this benchmark further on.

As for the number of monomials, we elude the
mentioned overfitting risk with a trivial trial-
and-error procedure based on elbow heurstics
[37]. Namely, at the beginning of the whole
procedure we simply launch a series of fitting
routines on the training set, each with a differ-
ent number of monomials, and check when the
slope of the fitting quadratic error computed on
a companion test set is such that adding another
monomial does not reduce the error tangibly (see
Figure 6). Since we are fitting different perfor-

mances on the same training set, we use obvi-
ous artifices to get a same number of monomials
on each performance, for simplifying the imple-
mentation of the subsequent identification steps.
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Figure 6. Course of the mean squared
interpolation error vs. number of monomials.

Namely, we focus on the maximum number of
monomials found by the clustering algorithm on
a given output component and increase the num-
ber of the other monomials by introducing ad-
ditional ones with slightly perturbed copies of
the former’s coefficients. Avoiding both overfit-
ting and an exceeding number of interpolating
parameters at the basis of the subsequent infer-
ence task is a common problem that has been
faced by many researchers [38] and we solve
with a local approach. Our additional expedi-
ent, mentioned earlier, lies in the fact that, rather
than looking for a single function interpolating
Spice in the whole model parameter domain, we
couple the interpolating task with Oy statistical
identification, so as to concentrate the interpolat-
ing requests exactly in a specific neighborhood
of the candidate X mean.

As for the training sets, we structured the pro-
cedure so as to commensurate the computational
effort with the accuracy requirement. We remark
that, besides the sample observed on the per-
formance parameters directly from the produc-
tion plant, we operate in an active learning mode
[39] producing specific samples by ourselves.
Namely, from the current X population (i.e. the
model parameter population as it is identified at
the current iteration) we draw two Kinds of sam-
ples, respectively to: i) identify the interpolating
polynomial, and ii) compute run-time statistics.
The first sample is more costly to generate, since
it requires the computation of Spice functions.
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Hence we tend to work with sample sizes of the
order of m = 200. In Figure 7 we show different
degrees of overlap between the empirical cumu-
lative distribution functions (ECDF) of the orig-
inal performances and companion ECDFs of the
reconstructed performances with different sam-
ple sizes. Though we have an evident improve-
ment with the sample size, we assume 250 as a
number of examples that is adequate to limit the
other drifting factors that, as we discussed, ham-
pers the accuracy of the results. The second kind
of samples is needed to compute the X moment
expected values in (3) to (9). Since their genera-
tion is very quick, we do not refrain from using
a sample of size 20m to get stable estimates of
these parameters.

Drawing a tolerance domain. The operational
goal of the questioned procedure is to check
that a good percentage of the produced circuits
will satisfy the requests on performances as they
emerge from the current production. Specifi-
cally, on the one hand, from a sample sy of this
production

consisting of correctly working circuits, we have
a statistical picture of the tolerance region that
we may expect for the circuit. Thus, on the
other hand, we may require the Y tolerance re-
gion to contain a percentage of, say, 95% of the
produced population, and check this property
through the percentage of sy elements falling in
the same region. No matter how we character-
ize the Y population, we may compute the toler-
ance region through a contour line of ¥ density
function which includes the population with the
mentioned probability. A preliminary exercise
is to start from the X parameters we have identi-
fied and generate a huge Y population through
Spice — a heavy task that we face only once,
however. Then we compute the desired con-
tour line with a standard Convex Hull Peeling
Depth approach[40-42] and check the sy per-
centage falling inside it. This is exactly what we
did in Figure 3. The values in the last column
of Table 1 denote that we may use the models
we identified in both nMOS and nMOS-DIB12
to compute the production yield with good accu-
racy. Thus we expect to get reliable data about
yield also in case of small changes in the model
parameters. With pMOS we have greater shifts

between planned and reckoned tolerance rates,
as a drawback of the inner model complexity of
this circuit. We must also notice that the latter
rates are reckoned solely on the third and fourth
performance components, since a large part of
the first and second components coordinates fall
outside the tolerance region, as a consequence
of the mentioned overestimation of their correla-
tion. We may view the same as a further conse-
quence of the coordinate-discretization/model-
complexity pair, the sole benefit of which is the
fact the tolerance region we draw represents a
conservative solution denoting a computed yield
that is definitely poorer than the actual one. Ac-
tually, with pMOS we pay for the low number of
Y statistics — possibly not the more relevant ones
— we involved in the model identification despite
the model complexity. As a further remark, we
note that with the easy benchmarks, the toler-
ance regions computed on the distribution recon-
structed through the X sample plus polynomial
transforms is very close to the one reconstructed
through the same sample via Spice mapping, as
evident in Figure 8. This suggests a very quick
way of using the identified model.

4.2 Contrasting the Literature Results

Our approach to the identification problem is
analogous to Expectation Minimization [43]. Ex-
pectation is at the basis of parameters inference,
minimization of fitting. This allows us to both con-
centrate the fitting accuracy exactly in the domains
involved by the sought parameters, and bootstrap
the latter with great accuracy at a low computational
cost. Unlike commonly in the literature, we do as-
sume neither the performance parameters distribu-
tion to be Gaussian, nor the model parameters to
be independent. Both hypotheses have been proven
to hamper accurate solutions[44]. Vice versa their
introduction isolates the merits of the identification
principally to the fitting accuracy of the Spice func-
tions [11]. Therefore we are forced to contrast our
methods with those proposed in literature exactly in
terms of running times and fitting accuracy.

4.2.1 Fitting Accuracy as Necessary.

Given the high computational costs of the Spice
models, their approximation through cheaper func-
tions is the first step in many numerical procedures
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Figure 7. Robustness of the solution vs. information lack and methods. Same graphs as in Figure 3 when
the third perfomance parameter is unavailable and the moment error minimization is pursued thorugh: (a)
Variable Step Search, and (b) Steepset Gradient Descent coupled with Differential Evolution methods.

Figure 8. 0.8 tolerance region projected on paired components (identified by plot labels) on the nMOS
benchmark with reduced model parameters as in Figure 5 computed via Spice mapping. Blue/red bullets:
polynomially approximated performances lying within/outside the tolerance region; green bullets: target

output; black bullets: delimiters of tolerance region (black curve).

on microelectronic circuits. Within the vast set of
methods proposed by researchers on the matter [4,
17, 45-51] in Table 3 we report a numerical com-
parison between two well reputed fitting methods
and ours (which we refer to as Granular Construct
based (GQ)).

The methods are Multivariate Adaptive Regres-
sion Splines (MARS)[45], i.e. piecewise polyno-
mials, and Polynomial NeEral Network (PNN)[52].
Namely, we consider the 6x reported in Table 1 as
the result of the nMOS circuit identification. On
the basis of these parameters and through Spice
functions, we draw a sample of 250 pairs (x,y,)
that we used to feed both competitor algorithms
and our own. In detail we used VariReg software
[53, 54] providing an efficient implementation of
both MARS and PNN. To ensure a fair compari-
son among all methods, we: i) set equal to 6 both
the number of monomials in our algorithm and the
maximum number of basis functions in MARS,
where we used a cubic interpolation, and ii) em-
ploy the default configuration in PNN by setting
the degree of single neurons polynomial equal to 2.
Moreover, in order to understand how the various

algorithms scale with the fitting domain, we repeat
the procedure with a second set 0% of parameters,
where the original standard deviations have been
uniformly doubled. In the table we report the mean
squared errors measured on a test set of size 1000,
whose values are both split on the four components
of the performance vector (in the brackets) and re-
sumed by their average (in italics). The compari-
son denotes similar accuracies with the most con-
centrated sample — the actual operational domain of
our polynomials — and a small deterioration of our
accuracy in the most dispersed sample, as a neces-
sary price we pay for the simplicity of our fitting
function.

4.2.2 Time Complexity.

As for the specific fitting procedures, their com-
plexity analysis looks a superfluous task given the
involved sizes: at most 1000 sample items, each one
described by at most 10 features. All algorithms’
executions last at most 1 second. This prevented us
from testing Caffeine algorithm [55]. Though well
reputed, this hybrid genetic algorithm indeed pro-
vides an accuracy that is either comparable or just a
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Ox
train test train test

0.0000125623 0.0000242739 0.000228931 0.000369871

0.0000350975 0.0000759397 0.000751481 0.00131925

GC 0.0000151476 0.0000211444 0.000164105 0.000159924
3.06034 x 1010 6.62265 % 10710 1.54286 x 1078 2.33858 x 1078
3.59774 x 1077 1.10138 x 1078 1.24052 x 1077 2.92353 x 1077

8.68173%10° 6 0.0000168024 0.000124012 0.0002805

0.0000246876 0.0000528055 0.000401349 0.00100927

MARS 0.0000100344 0.0000143915 0.0000946271 0.000112503
2.80773 x 10710 5.92204 x 10710 5.3722 x 1079 6.07291 x 1072
4.66935 x 10~° 1.19291 x 108 6.47147 x 1078 2.22601 x 1077

0.0000602061 0.0000769737 0.000125976 0.000280898

0.000230822 0.000293665 0.000409046 0.00101197

PNN 0.0000100003 0.0000142199 0.0000948249 0.000111354
2.7761 x 10~10 5.70282 x 1010 4.14671 x 1072 7.14833 x 10~°
2.38434 x 1077 9.12621 x 1072 2.84136 x 108 2.62591 x 1077

Table 2. Performance comparison between fitting algorithms. Rows: algorithms; main columns:
benchmark parameterization; subcolumns: experimental environments (training set, test set).

bit higher than competitors, but at a cost of around
3 hours for the sample size managed by us [12].

As for the whole procedure, we reckon over-
all running times of around half an hour. Though
not easily contrastable with computational costs of
analogous tasks, this order of magnitude results ad-
equate for an intensive use of the algorithm in a cir-
cuit design framework.

5 Conclusions

We solve a complex electronic manufacturing
control problem using a granular construct. In spite
of the methodology broadness the attribute gran-
ular may evoke, we obtain a very accurate solu-
tion benefitting from strict exploitation of state-of-
the-art theoretical results. Starting from the basic
idea of considering the Spice function as a mix-
ture of fuzzy sets, we enriched its implementation
with a series of sophisticated methodologies for: i)
identifying clusters on the basis of proper adaptive
metrics defined on functional spaces; ii) descend-
ing, direction by direction, along the ravines of the
cost functions of the related optimization problems;
iii) inverting the (X,Y) mapping in case of unbal-
anced problems through the bootstrapping of con-
ditional Gaussian distributions; and iv) computing
tolerance regions through convex hull based peel-
ing techniques. In this way we supply a very ac-
curate and fast algorithm to statistically identify the
circuit model. We actually did not exploit all sta-
tistical features of the inversion problem, since we
basically rely on first and second order moments of

both source and destination distributions. Hence,
as next step in this research vein, we plan to rein-
troduce the membership functions i (x) of points
to clusters and maintain the membership grades of
the monomial distributions to the Y distribution, as
an extension of the a priori probability of cluster
k, obtaining corrected monomial densities. In this
way we may come to an analytical expression of
the Y distribution through which we aim to obtain a
further refinement of the X parameters.
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