Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Innowacyjna technologia inaktywacji związków alergennych z powierzchni elementów prototypowej linii do produkcji wyrobów o kontrolowanej alergenności
Języki publikacji
Abstrakty
The study aimed to develop and validate effective procedures for cleaning and allergen deactivation in a prototype processing line for crispcoated meat products. Reliable cleaning methods are critical for ensuring food safety and preventing cross-contamination when conventional and allergen-controlled products are manufactured on the same line. Critical points along the processing line were identified through preliminary assessments. At these points, allergen residues were monitored using immunoassay-based tests targeting major food allergens, including gluten, soy, milk, nuts, sesame, and others. Several cleaning procedures were compared with regard to their ability to eliminate allergenic proteins from equipment surfaces. Lower-concentration protocols proved inadequate, particularly in high-risk areas such as cutting, mixing, and cooling zones. In contrast, the optimized procedure achieved complete removal of allergens at all critical points. This outcome was further confirmed during validation trials involving thirty pilot production batches, where no allergenic proteins were detected in environmental swabs or final products. The results demonstrate that carefully designed cleaning strategies can enable dual use of processing lines for both standard and allergen-controlled products. The validated procedure offers a cost-effective and practical solution for the food industry, supporting compliance with regulatory requirements and improved consumer safety.
Celem badania było opracowanie i walidacja skutecznych procedur mycia i dezaktywacji alergenów w prototypowej linii do produkcji wyrobów mięsnych w chrupkiej otoczce. Niezawodne metody czyszczenia mają istotne znaczenie dla zapewnienia bezpieczeństwa żywności i zapobiegania zanieczyszczeniom krzyżowym, szczególnie wówczas gdy na tej samej linii wytwarzane są produkty konwencjonalne i produkty z kontrolowaną zawartością alergenów. Punkty krytyczne na linii produkcyjnej zidentyfikowano poprzez wstępną ocenę procesu dezaktywacji zwiazków alergennych. W tych punktach monitorowano pozostałości alergenów za pomocą testów immunoenzymatycznych ukierunkowanych na główne alergeny pokarmowe, w tym gluten, soję, mleko, orzechy, sezam i inne. Porównano wybrane procedur mycia pod kątem ich zdolności do eliminowania białek alergennych z powierzchni urządzeń. Procedury o niższych stężeniach środków dezaktywujących okazały się niewystarczające, szczególnie w obszarach wysokiego ryzyka, takich jak strefy rozbioru, łaczenia składników oraz chłodzenia. Zoptymalizowana procedura pozwoliła na całkowite usunięcie alergenów we wszystkich punktach krytycznych. Wynik ten został potwierdzony podczas badań walidacyjnych obejmujących trzydzieści pilotażowych partii produkcyjnych, w których nie wykryto białek alergennych w wymazach z powierzchni lini jak również w gotowych produktach. Badania wskazują, że odpowiednio opracowane strategie dezaktywacji zwiazków alergennych pozwalają na wykorzystanie linii produkcyjnych, zarówno do wytwarzania produktów standardowych, jak i tych z kontrolowaną alergennoscią. Zwalidowana procedura oferuje ekonomiczne i praktyczne rozwiązanie dla przemysłu spożywczego, zapewniając zgodność z regulacyjnymi prawnymi i zwiekszając bezpieczeństwo konsumentów.
Czasopismo
Rocznik
Tom
Strony
229--247
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
autor
- Department of Technique and Food Development, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, Nowoursynowska 159c Street, 32, 02-776, Warsaw, Poland
autor
- Department of Technique and Food Development, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, Nowoursynowska 159c Street, 32, 02-776, Warsaw, Poland
autor
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, 05-552 Magdalenka, Poland
autor
- Department of Technique and Food Development, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, Nowoursynowska 159c Street, 32, 02-776, Warsaw, Poland
autor
- Department of Technique and Food Development, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, Nowoursynowska 159c Street, 32, 02-776, Warsaw, Poland
- Department of Technique and Food Development, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, Nowoursynowska 159c Street, 32, 02-776, Warsaw, Poland
autor
- Department of Technique and Food Development, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, Nowoursynowska 159c Street, 32, 02-776, Warsaw, Poland
Bibliografia
- Agüeria, D. A., Libonatti, C., & Civit, D. (2021). Cleaning and disinfection programmes in food establishments: a literature review on verification procedures. Journal of Applied Microbiology, 131(1), 23-35. https://doi.org/10.1111/jam.14962.
- Alzubeidi, Y. S., Udompijitkul, P., Talukdar, P. K., & Sarker, M. R. (2018). Inactivation of Clostridium perfringens spores adhered onto stainless steel surface by agents used in a clean-in-place procedure. International Journal of Food Microbiology, 277(April), 26-33. https://doi.org/10.1016/j.ijfoodmicro.2018.04.016.
- Avila-Sierra, A., Vicaria, J. M., Lechuga, M., Martínez-Gallegos, J. F., Olivares-Arias, V., MedinaRodríguez, A. C., Jiménez-Robles, R., & Jurado-Alameda, E. (2021). Insights into the optimisation of the Clean-In-Place technique: Cleaning, disinfection, and reduced environmental impact using ozone-based formulations. Food and Bioproducts Processing, 129, 124-133. https://doi.org/10.1016/j.fbp.2021.08.003.
- Bakke, M. (2022). A Comprehensive Analysis of ATP Tests: Practical Use and Recent Progress in the Total Adenylate Test for the Effective Monitoring of Hygiene. Journal of Food Protection, 85(7), 1079-1095. https://doi.org/10.4315/JFP-21-384.
- Canut, A., & Pascual, A. (2008). Pollution prevention in food industries through both cleaning of closed equipment with ozonated water and cleaning in place (CIP) systems. WIT Transactions on Ecology and the Environment, 111, 615-625. https://doi.org/10.2495/WP080601.
- Chen, L., Rana, Y. S., Heldman, D. R., & Snyder, A. B. (2022). Environment, food residue, and dry cleaning tool all influence the removal of food powders and allergenic residues from stainless steel surfaces. Innovative Food Science & Emerging Technologies, 75, 102877. https://doi.org/https://doi.org/10.1016/j.ifset.2021.102877.
- Delhalle, L., Taminiau, B., Fastrez, S., Fall, A., Ballesteros, M., Burteau, S., & Daube, G. (2020). Evaluation of Enzymatic Cleaning on Food Processing Installations and Food Products Bacterial Microflora. Frontiers in Microbiology, 11. https://doi.org/10.3389/fmicb.2020.01827.
- Do, A. B., Khuda, S. E., & Sharma, G. M. (2019). Undeclared Food Allergens and Gluten in Commercial Food Products Analyzed by ELISA. Journal of AOAC INTERNATIONAL, 101(1), 23-35. https://doi.org/10.5740/jaoacint.17-0384.
- European Parliament, & Council of the European Union. (2011). Regulation (EU) No 1169/2011 of the European Parliament and of the Council of 25 October 2011 on the provision of food information to consumers. Official Journal of the European Union.
- Fabiola Ayres Cacciatore, A. B., & da Silva Malheiros, P. (2021). Combining natural antimicrobials and nanotechnology for disinfecting food surfaces and control microbial biofilm formation. Critical Reviews in Food Science and Nutrition, 61(22), 3771-3782. https://doi.org/10.1080/ 10408398.2020.1806782.
- Falcó, I., Verdeguer, M., Aznar, R., Sánchez, G., & Randazzo, W. (2019). Sanitizing food contact surfaces by the use of essential oils. Innovative Food Science & Emerging Technologies, 51, 220-228. https://doi.org/https://doi.org/10.1016/j.ifset.2018.02.013.
- Falcomer, A. L., Araujo, L. S., Farage, P., Monteiro, J. S., Nakano, E. Y., & Zandonadi, R. P. (2020). Gluten contamination in food services and industry: A systematic review. Critical Reviews in Food Science and Nutrition, 60(3), 479-493. https://doi.org/10.1080/10408398.2018.1541864.
- Herrera-Márquez, O., Serrano-Haro, M., Vicaria, J. M., Jurado, E., Fraatz-Leál, A. R., Zhang, Z. J., Fryer, P. J., & Avila-Sierra, A. (2020). Cleaning maps: A multi length-scale strategy to approach the cleaning of complex food deposits. Journal of Cleaner Production, 261, 121254. https://doi.org/https://doi.org/10.1016/j.jclepro.2020.121254.
- İpek, D., & Demirel Zorba, N. N. (2018). Microbial load of white cheese process lines after CIP and COP: A case study in Turkey. LWT, 90, 505-512. https://doi.org/https://doi.org/10.1016/j.lwt. 2017.12.062.
- Karuppuchamy, V., Heldman, D. R., & Snyder, A. B. (2024). A review of food safety in w-moisture foods with current and potential dry-cleaning methods. Journal of food science, 89(2), 793-810. https://doi.org/10.1111/1750-3841.16920.
- Katsigiannis, A. S., Bayliss, D. L., & Walsh, J. L. (2021). Cold plasma decontamination of stainless steel food processing surfaces assessed using an industrial disinfection protocol. Food Control, 121, 107543. https://doi.org/https://doi.org/10.1016/j.foodcont.2020.107543.
- Kryuchenko, E. V., Chernukha, I. M., Kuzlyakina, Y. A., & Zamula, V. S. (2022). Food Allergen Control At Meat Processing Enterprise: Scientific Rationale and Preliminary Hazard Analysis. Theory and Practice of Meat Processing, 7(4), 218-228. https://doi.org/10.21323/2414-438X-2022-7-4- 218-228.
- Le Gentil, C., Sylla, Y., & Faille, C. (2010). Bacterial re-contamination of surfaces of food processing lines during cleaning in place procedures. Journal of Food Engineering, 96(1), 37-42. https://doi.org/10.1016/j.jfoodeng.2009.06.040.
- Maes, S., Heyndrickx, M., Vackier, T., Steenackers, H., Verplaetse, A., & Reu, K. De. (2019). Identification and Spoilage Potential of the Remaining Dominant Microbiota on Food Contact Surfaces after Cleaning and Disinfection in Different Food Industries. Journal of Food Protection, 82(2), 262-275. https://doi.org/https://doi.org/10.4315/0362-028X.JFP-18-226.
- Michelsen-Huisman, A. D., van Os-Medendorp, H., Blom, W. M., Versluis, A., Castenmiller, J. J. M., Noteborn, H. P. J. M., Kruizinga, A. G., Houben, G. F., & Knulst, A. C. (2018). Accidental allergic reactions in food allergy: Causes related to products and patient’s management. Allergy, 73,(12), 2377-2381). https://doi.org/10.1111/all.13560.
- Obe, T., Nannapaneni, R., Schilling, W., Zhang, L., McDaniel, C., & Kiess, A. (2020). Prevalence of Salmonella enterica on poultry processing equipment after completion of sanitization procedures. Poultry Science, 99(9), 4539-4548. https://doi.org/10.1016/j.psj.2020.05.043.
- Pachołek, B., Sady, S., & Kupińska-Adamczyk, E. (2018). Management of Food Allergens in the Food Industry. Journal of Agribusiness and Rural Development, 47(1), 73-80. https://doi.org/10.17306/ j.jard.2018.00388.
- Pant, K. J., Cotter, P. D., Wilkinson, M. G., & Sheehan, J. J. (2023). Towards sustainable Cleaning-inPlace (CIP) in dairy processing: Exploring enzyme-based approaches to cleaning in the Cheese industry. Comprehensive Reviews in Food Science and Food Safety, 22(5), 3602-3619. https://doi.org/10.1111/1541-4337.13206.
- Regulation (EC) No 1272/2008 of the European Parliament and of the Council of 16 December 2008 on classification, labelling and packaging of substances and mixtures, amending and repealing Directives 67/548/EEC and 1999/45/EC, and amending Regulation (EC) No 1907/2006 (Text with EEA relevance).
- Seth, D., Poowutikul, P., Pansare, M., & Kamat, D. (2020). Food Allergy: A Review. Pediatric Annals, 49(1), e50–e58. https://doi.org/10.3928/19382359-20191206-01.
- Shelver, W. L., McGarvey, A. M., & Yeater, K. M. (2021). Performance of allergen testing in a survey of frozen meals and meals ready-to-eat (MREs). Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 38(8), 1249-1259. https://doi.org/10.1080/19440049.2021.1914870.
- Spychaj, A., Pospiech, E., Iwańska, E., & Montowska, M. (2018). Detection of allergenic additives in processed meat products. Journal of the Science of Food and Agriculture, 98(13), 4807-4815. https://doi.org/10.1002/jsfa.9083.
- Thilina, J. E. (2022). A review on Cleaning and Disinfection in Food industry. ResearchGate, August 2020, 1–19. Available online: https://www.researchgate.net/publication/357054686%0AA (accessed on 10 August 2025).
- Tirpanci Sivri, G., Abdelhamid, A. G., Kasler, D. R., & Yousef, A. E. (2023). Removal of Pseudomonas fluorescens biofilms from pilot-scale food processing equipment using ozone-assisted cleaning-inplace. Frontiers in Microbiology, 14, 1141907. https://doi.org/10.3389/fmicb.2023.1141907.
- Tóth, A. J., Kajtor, M., Kasza, G., Battay, M., Bittsánszky, A., & Süth, M. (2024). Gluten contamination survey on school kitchen surfaces and identification of the food handling practices limiting crosscontamination with gluten. Food Control, 160, 110312. https://doi.org/10.1016/j.foodcont.2024.110312.
- URPLWMiPB, 2025. List of Biocidal Products, part I. Available online: https://www.gov.pl/web/urpl/ wykaz-produktow-biobojczych2 (accessed on 10 August 2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e0fb7c2f-1bf5-4a9c-8e94-cdaa59baf7a6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.