PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Functionalization of Gold Nanoparticles for the Detection of Heavy Metals in Contaminated Water Samples in the Province of Tayacaja

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The work consisted in functionalizing gold nanoparticles to analytically detect heavy metals in contaminated water; in Tayacaja-Huancavelica-Peru, using physical method of laser ablation. The 450 mJ/p Nd:YAG was used as a pulsed laser generator for the production of colloids from AuNPs by the top-down approach; the target was a 1 cm x 1.5 cm high purity gold metallic plate with a thickness of 1 mm, inside a 20 ml cuvette of deionized water, containing 5 ml of L-Cysteine ≥ 75% purity. Nanoparticle colloids were characterized by UV-Vis spectroscopy from 200 to 1160 nm range. Using a convex lens, the gold metal plate was ablated by the laser equipment, located 10 cm from the focus; with λ = 1064 nm and λ = 532 nm with energy equivalent to 60.28 mJ/p and 32.99 mJ/p respectively, with a ratio of 2 Hz, for 30 and 60 min. All the samples produced were subjected to the dispersion process by sonication at 40 KHz for one hour. The functionalized nanoparticles presented a resonance displacement of the maximum wavelength peak with respect to the reference at approximately 22.51 nm; consequently, the increase in diameter occurred at 52.10 nm. The sensitive capacity of the functionalized nanoparticles was verified for different concentrations of analytes in water, made up of divalent heavy metal ions Cd2+, Pb2+, and trivalent nonmetal As3+. At a concentration greater than 500 uM, the color of the functionalized nanoparticles turned bluish, due to the presence of positive ions. Therefore, it was stated that the functionalized nanoparticles enable the detection of heavy metals in water by color variation.
Rocznik
Strony
88--99
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
  • Facultad de Ingeniería Electrónica-Sistemas, Instituto de Investigación de Ciencias de Ingeniería, Universidad Nacional de Huancavelica, Jr. La Mar 755, Pampas 09156, Huancavelica, Perú
  • Instituto de Investigación, Universidad Nacional Autónoma de Tayacaja Daniel Hernández Morillo, Jr. Bolognesi 416-418, Pampas 09156, Huancavelica, Perú
  • Departamento Académico de Física, Universidad Nacional de Trujillo, Av. Juan Pablo II, Trujillo 13011, La Libertad, Perú
  • Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Coyoacán 04510, CDMX, México
Bibliografia
  • 1. Arathi, A., Joseph, X., Akhil, V., Mohanan, P.V. 2022. L-Cysteine capped zinc oxide nanoparticles induced cellular response on adenocarcinomic human alveolar basal epithelial cells using a conventional and organ-on-a-chip approach. Colloids and Surfaces B: Biointerfaces, 211, 112300.
  • 2. Avantes. 2018. Spectrometer UV-Vis-NIR - AvaSpec-ULS2048x64-EVO. https://www.medicalexpo.com/prod/avantes/product-104219-950813.html
  • 3. Awual, M.R., Yaita, T., Suzuki, S., Shiwaku, H. 2015. Ultimate selenium (IV) monitoring and removal from water using a new class of organic ligand based composite adsorbent. Journal of Hazardous Materials, 291, 111–119. https://doi.org/https://doi.org/10.1016/j.jhazmat.2015.02.066
  • 4. Briffa, J., Sinagra, E., Blundell, R. 2020. Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon, 6(9), e04691.
  • 5. Carbajal-Morán, H., Márquez-Camarena, J.F., Galván-Maldonado, C.A. 2022. Influence of Gold Nanoparticles on the Photocatalytic Action of Titanium Dioxide in Physical-Chemical Parameters of Greywater. Journal of Ecological Engineering, 23(1), 182–192. https://doi.org/10.12911/22998993/143942
  • 6. Darbha, G.K., Singh, A.K., Rai, U.S., Yu, E., Yu, H., Chandra Ray, P. 2008. Selective Detection of Mercury (II) Ion Using Nonlinear Optical Properties of Gold Nanoparticles. Journal of the American Chemical Society, 130(25), 8038–8043. https://doi.org/10.1021/ja801412b
  • 7. Demirak, A., Yilmaz, F., Tuna, A.L., Ozdemir, N. 2006. Heavy metals in water, sediment and tissues of Leuciscus cephalus from a stream in southwestern Turkey. Chemosphere, 63(9), 1451–1458.
  • 8. Haiss, W., Thanh, N.T.K., Aveyard, J., Fernig, D.G. 2007. Determination of size and concentration of gold nanoparticles from UV− Vis spectra. Analytical Chemistry, 79(11), 4215–4221.
  • 9. Halkare, P., Punjabi, N., Wangchuk, J., Nair, A., Kondabagil, K., Mukherji, S. 2019. Bacteria functionalized gold nanoparticle matrix based fiber-optic sensor for monitoring heavy metal pollution in water. Sensors and Actuators B: Chemical, 281, 643–651. https://doi.org/https://doi.org/10.1016/j.snb.2018.10.119
  • 10. Han, G., Wang, X., Hamel, J., Zhu, H., Sun, R. 2016. Lignin-AuNPs liquid marble for remotely-controllable detection of Pb 2+. Scientific Reports, 6(1), 1–8.
  • 11. Kateshiya, M.R., George, G., Rohit, J.V, Malek, N.I., Kumar Kailasa, S. 2020. Ractopamine as a novel reagent for the fabrication of gold nanoparticles: Colorimetric sensing of cysteine and Hg2+ ion with different spectral characteristics. Microchemical Journal, 158, 105212. https://doi.org/https://doi.org/10.1016/j.microc.2020.105212
  • 12. Kumari, P., Meena, A. 2020. Green synthesis of gold nanoparticles from Lawsoniainermis and its catalytic activities following the Langmuir-Hinshelwood mechanism. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 606, 125447.
  • 13. Naharuddin, N.Z.A., Abu Bakar, M.H., Sadrolhosseini, A.R., Tamchek, N., Alresheedi, M.T., Abas, A.F., Mahdi, M.A. 2022. Pulsed-laser-ablated goldnanoparticles saturable absorber for mode-locked erbium-doped fiber lasers. Optics & Laser Technology, 150, 107875. https://doi.org/https://doi.org/10.1016/j.optlastec.2022.107875
  • 14. Quantel. 2019. Q-smart 450 Pulsed Nd:YAG Laser, 213 to 1064nm, 8 to 450mJ, Product - Photonic Solutions, UK. https://www.photonicsolutions.co.uk/product-detail.php?prod=6345
  • 15. Rahman, Z., Singh, V.P. 2019. The relative impact of toxic heavy metals (THMs)(arsenic (As), cadmium (Cd), chromium (Cr)(VI), mercury (Hg), and lead (Pb)) on the total environment: an overview. Environmental Monitoring and Assessment, 191(7), 1–21.
  • 16. Salam, J.A., Vinod, M., Gopchandran, K.G. 2022. Studies on plasmon coupling between pure colloidal gold nanoparticles prepared by laser ablation in water. Materials Today: Proceedings, 54, 882–889. https://doi.org/https://doi.org/10.1016/j.matpr.2021.11.205
  • 17. Seth, R. 2020. L-cysteine functionalized gold nanoparticles as a colorimetric sensor for ultrasensitive detection of toxic metal ion cadmium. Materials Today: Proceedings, 24, 2375–2382.
  • 18. Shafiqa, A.R., Aziz, A.A., Mehrdel, B. 2018. Nanoparticle optical properties: size dependence of a single gold spherical nanoparticle. Journal of Physics: Conference Series, 1083(1), 12040.
  • 19. Shin, M., Yang, S., Kwak, H.W., Lee, K.H. 2022. Synthesis of gold nanoparticles using silk sericin as a green reducing and capping agent. European Polymer Journal, 164, 110960. https://doi.org/https://doi.org/10.1016/j.eurpolymj.2021.110960
  • 20. Sigma-Aldrich. 2019. 1327-53-3. https://www.sigmaaldrich.com/PE/es/search/1327-53-3?focus=products&page=1&perPage=30&sort=relevance&term=1327-53-3&type=product
  • 21. Slocik, J.M., Zabinski Jr, J.S., Phillips, D.M., Naik, R.R. 2008. Colorimetric response of peptide‐functionalized gold nanoparticles to metal ions. Small, 4(5), 548–551.
  • 22. Titus, D., Samuel, E.J.J., Roopan, S.M. 2019. Nanoparticle characterization techniques. In Green synthesis, characterization and applications of nanoparticles. Elsevier, 303–319.
  • 23. Tripathi, R.M., Park, S.H., Kim, G., Kim, D.-H., Ahn, D., Kim, Y.M., Kwon, S.J., Yoon, S.-Y., Kang, H.J., & Chung, S.J. 2019. Metal-induced redshift of optical spectra of gold nanoparticles: An instant, sensitive, and selective visual detection of lead ions. International Biodeterioration & Biodegradation, 144, 104740. https://doi.org/https://doi.org/10.1016/j.ibiod.2019.104740
  • 24. Ullah, N., Mansha, M., Khan, I., Qurashi, A. 2018. Nanomaterial-based optical chemical sensors for the detection of heavy metals in water: Recent advances and challenges. TrAC Trends in Analytical Chemistry, 100, 155–166. https://doi.org/https://doi.org/10.1016/j.trac.2018.01.002
  • 25. Waheed, A., Mansha, M., Ullah, N. 2018. Nanomaterials-based electrochemical detection of heavy metals in water: Current status, challenges and future direction. TrAC Trends in Analytical Chemistry, 105, 37–51. https://doi.org/https://doi.org/10.1016/j.trac.2018.04.012
  • 26. Zhang, S., Zhou, H., Kong, N., Wang, Z., Fu, H., Zhang, Y., Xiao, Y., Yang, W., Yan, F. 2021. l-cysteine-modified chiral gold nanoparticles promote periodontal tissue regeneration. Bioactive Materials, 6(10), 3288–3299. https://doi.org/https://doi.org/10.1016/j.bioactmat.2021.02.035
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e0fa0c71-8f18-40ee-9cad-ec0bb22964ce
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.