Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The Wadi Ouergha watershed faces significant challenges due to erosion, which directly impacts sedimentation rates and reduces the water storage capacity of the El Wahda dam, a crucial infrastructure for the region. This study aims to prioritize the sub-watersheds most vulnerable to erosion, which pose a direct threat to the dam’s efficiency. Through morphometric and hypsometric analysis, the research evaluates the geomorphological evolution, hydrological characteristics, and erosion risks within the sub-watersheds. The results indicate that sub-watersheds SW 6, SW 7, and SW 11 are the most at risk, with high drainage densities and advanced erosion stages, demanding immediate intervention. Sub-watersheds SW 2, SW 3, SW 4, SW 5 and SW 7 are identified as moderately vulnerable but still require erosion control measures to prevent long-term degradation. The findings underscore the need for targeted soil management and conservation efforts in these priority areas. This study introduces a novel integration of spatial analysis with statistical methods, incorporating weighted compound factors (WCF) and quartile analysis to prioritize sub-watersheds according to their vulnerability. This method enables a data-driven classification, establishing a structured framework for conservation priorities. Through combined numerical rankings and spatial mapping, decision-makers gain a clear visualization of high-risk areas, facilitating more targeted watershed management and optimized resource allocation.
Wydawca
Rocznik
Tom
Strony
235--256
Opis fizyczny
Bibliogr. 42 poz., rys., tab.
Twórcy
autor
- Geosciences Laboratory, Department of Geology, Faculty of Sciences, Ibn Tofaïl University, BP 133, Kénitra 14000, Morocco
autor
- Geosciences Laboratory, Department of Geology, Faculty of Sciences, Ibn Tofaïl University, BP 133, Kénitra 14000, Morocco
autor
- Geosciences Laboratory, Department of Geology, Faculty of Sciences, Ibn Tofaïl University, BP 133, Kénitra 14000, Morocco
autor
- Department of Geology, Faculty of Sciences, University Mohammed V, 4 street Ibn Battouta B.P. 1014 RP, Rabat, Morocco
autor
- Geosciences Laboratory, Department of Geology, Faculty of Sciences, Ibn Tofaïl University, BP 133, Kénitra 14000, Morocco
autor
- Department of Natural Resources and Environment, Hassan II Agronomy and Veterinary Institute, Rue Allal Al Fassi Madinate Al Irfane 1010, Rabat, Morocco
autor
- Geosciences Laboratory, Department of Geology, Faculty of Sciences, Ibn Tofaïl University, BP 133, Kénitra 14000, Morocco
Bibliografia
- 1. Akhtar A., Bayes A., Peter S. (2021). Flash flood susceptibility assessment using the parameters of drainage basin morphometry in SE Bangladesh. Quaternary International, 575–576, 295–307. https://doi.org/10.1016/j.quaint.2020.04.047
- 2. Arabameri, A., Tiefenbacher, J. P., Blaschke, T., Pradhan, B., & Tien Bui, D. (2020). Morphometric analysis for soil erosion susceptibility mapping using novel GIS-based ensemble model. Remote Sensing, 12(5), 874. https://doi.org/10.3390/rs12050874
- 3. Babu, K. J., Sreekumar, S., & Aslam, A. (2016). Implication of drainage basin parameters of a tropical river basin of South India. Applied Water Science, 6(1), 67–75. https://doi.org/10.1007/s13201-014-0212-8
- 4. Bardouz A. & Boumeaza T. (2016). Etude d’envasement du barrage Al Wahda (nord-ouest du maroc) à l’aide du SIG et technique de télédétection. The 3rd Edition of the international GIS users conference, 180–185.
- 5. Bharadwaj, A. K., Pradeep, C., Thirumalaivasan, D., Shankar, C. P., & Madhavan, N. (2014). Morphometric analysis of Adyar watershed. OSR Journal of Mechanical and Civil Engineering (IOSR-JMCE), National Conference on Contemporary Approaches in Mechanical, Automobile, and Building Sciences, Karpaga Vinayaga College of Engineering & Technology, 71–77.
- 6. Biswas, S., Sudhakar, S., & Desai, V. R. (1999). Prioritisation of subwatersheds based on morphometric analysis of drainage basin: A remote sensing and GIS approach. Journal of the Indian Society of Remote Sensing, 27(3), 155–166. https://doi.org/10.1007/BF02991569
- 7. Boukrim, S., Lahrach, A., Sadkaoui, N., & Chaouni, A. (2011). Impact des changements climatiques sur l’hydrologie du bassin versant de l’Ouergha (Rif, Maroc). In The 6th Edition of the Scientific Days of 2iE. 1–3.
- 8. Chorley, R. J. (1957). Climate and morphometry. The Journal of Geology, 65(6), 628-638. https://doi.org/10.1086/626468
- 9. Dar, I. A., Sankar, K., & Dar, M. A. (2012). Groundwater development in hardrock terrain using morphometric analysis. Environmental Geosciences, 19(4), 143-162. https://doi.org/10.1306/eg06011212003
- 10. El Brahimi, M., Mastere, M., Benzougagh, B., et al,. (2024). Assessing soil erosion vulnerability through geospatial morphometric analysis in the Oued Amter Basin (Northwest Morocco). Euro-Mediterranean Journal for Environmental Integration, 9, 1157– 1180. https://doi.org/10.1007/s41207-024-00493-4
- 11. Faniran, A. (1968). The index of drainage intensity—A provisional new drainage factor. Australian Journal of Science, 31, 328–330.
- 12. Farhan, Y., Anbar, A., Enaba, O., & Al-Shaikh, N. (2015). Quantitative analysis of geomorphometric parameters of Wadi Kerak, Jordan, using remote sensing and GIS. Journal of Water Resource and Protection, 7(6), 456–474. https://doi.org/10.4236/ jwarp.2015.76037
- 13. Ghasemlounia, R., & Utlu, M. (2021). Flood prioritization of basins based on geomorphometric properties using principal component analysis, morphometric analysis, and Redvan’s priority methods: A case study of Harşit River Basin. Journal of Hydrology, 603, 127061. https://doi.org/10.1016/j. jhydrol.2021.127061
- 14. Hadley, R. & Schumm, S. (1961). Sediment sources and drainage basin characteristics in upper Cheyenne River Basin. US Geological Survey Water- Supply Paper 1531-B, Washington DC, 198.
- 15. Horton, R. E. (1932). Drainage-basin characteristics. Eos, Transactions American Geophysical Union, 13(1), 350–361. https://doi.org/10.1029/ TR013i001p00350
- 16. Horton, R. E. (1945). Erosional development of streams and their drainage basins; Hydrophysical approach to quantitative morphology. GSA Bulletin, 56(3), 275–370. https://doi.org/10.1130/0016-7606(1945)56[275:EDOSAT]2 .0.CO;2
- 17. Jothimani, M., Abebe, A., & Dawit, Z. (2020). Mapping of soil erosion-prone sub-watersheds through drainage morphometric analysis and weighted sum approach: A case study of the Kulfo River basin, Rift Valley, Arba Minch, Southern Ethiopia. Modeling Earth Systems and Environment, 6, 2377–2389. https://doi.org/10.1007/s40808-020-00820-y
- 18. Kabite, G., & Gessesse, B. (2018). Hydro-geomorphological characterization of Dhidhessa River Basin, Ethiopia. International Soil and Water Conservation Research, 6(2), 175–183. https://doi.org/10.1016/j.iswcr.2018.02.003
- 19. Kadam, A. K., Jaweed, T. H., Kale, S. S., Umrikar, B. N., & Sankhua, R. N. (2019). Identification of erosion-prone areas using modified morphometric prioritization method and sediment production rate: a remote sensing and GIS approach. Geomatics, Natural Hazards and Risk, 10(1), 986–1006. https:// doi.org/10.1080/19475705.2018.1555189
- 20. Kamaraj, P., Jothimani, M., Panda, B., & Sabarathinam, C. (2023). Mapping of groundwater potential zones by integrating remote sensing, geophysics, GIS, and AHP in a hard rock terrain. Urban Climate, 51, Article 101610. https://doi.org/10.1016/j. uclim.2023.101610
- 21. Kamaraj, P., Thangapandian, I. D., Karuppannan, S., & Garo, T. (2024). A statistical-based geospatial approach to prioritize the watersheds for soil erosion conservation in the Upper Awash Basin (Upstream Koka), Ethiopia. Kuwait Journal of Science, 51, Article 100198. https://doi.org/10.1016/j.kjs.2024.100198
- 22. Mahala, A. (2020). The significance of morphometric analysis to understand the hydrological and morphological characteristics in two different morpho-climatic settings. Applied Water Science, 10, 33. https://doi.org/10.1007/s13201-019-1118-2
- 23. Maurer, G. (1959). Les pays rifains et prérifains. L’information géographique, 23(4), 164–171. https://doi.org/10.3406/ingeo.1959.1916
- 24. Melton, M. (1957). An analysis of the relations among elements of climate, surface properties and geomorphology (Technical Report No. 11, Project NR 389-042). Department of Geology, Columbia University, Office of Navy Research.
- 25. Meshram, S. G., & Sharma, S. K. (2017). Prioritization of watershed through morphometric parameters: A PCA-based approach. Applied Water Science, 7, 1505–1519. https://doi.org/10.1007/ s13201-015-0332-9
- 26. Miller, V. (1953). A quantitative geomorphic study of drainage basin characteristics in the Clinch Mountain area, Virginia and Tennessee (Project NR 389-402, Technical Report No. 3). Department of Geology, Columbia University, Office of Naval Research.
- 27. Naoui, B., Titafi, A., Baghdad, B., Chakiri, S., Sadiki, M., Zerdeb, M. A., El Omari, M., & Lididi, S. (2023). Temporal analysis of erosion risk classes and rates in the Wadi Ouergha watershed, Northern Morocco. Ecological Engineering & Environmental Technology, 24(9), 150–160. https://doi.org/10.12912/27197050/173087
- 28. Nooka Ratnam, K., Srivastava, Y. K., Venkateswara Rao, V., Amminedu, E., & Murthy, K. S. R. (2005). Check dam positioning by prioritization of micro-watersheds using SYI model and morphometric analysis — Remote sensing and GIS perspective. Journal of the Indian Society of Remote Sensing, 33(1), 25–38. https://doi.org/10.1007/BF02989988
- 29. Patel, A., Ramana Rao, K. V., Rajwade, Y. A., Saxena, C. K., Singh, K., & Srivastava, A. (2023). Comparative analysis of MCDA techniques for identifying erosion-prone areas in the Burhanpur watershed in Central India for the purposes of sustainable watershed management. Water, 15(22), 3891. https://doi.org/10.3390/w15223891
- 30. Pike, R. J., & Wilson, S. E. (1971). Elevation-relief ratio, hypsometric integral, and geomorphic area-altitude analysis. GSA Bulletin, 82(4), 1079–1084. https:// doi.org/10.1130/0016-7606(1971)82[1079:ERHIA G]2.0.CO;2
- 31. Rai, P. K., Mohan, K., Mishra, S., & Ahmad, A. (2017). A GIS-based approach in drainage morphometric analysis of Kanhar River Basin, India. Applied Water Science, 7, 217–232. https://doi.org/10.1007/s13201-014-0238-y
- 32. Schumm, S. A. (1956). Evolution of drainage systems and slopes in badlands at Perth Amboy, New Jersey. GSA Bulletin, 67(5), 597–646. https://doi.org/10.1130/0016-7606(1956)67[597:EODSAS]2. 0.CO;2
- 33. Shekar, P. R., Mathew, A., Abdo, H. G., & Agarwal, B. (2023). Prioritizing sub-watersheds for soil erosion using geospatial techniques based on morphometric and hypsometric analysis: A case study of the Indian Wyra River basin. Applied Water Science, 13, 160. https://doi.org/10.1007/s13201-023-01963-w
- 34. Singh, O., Sarangi, A., & Sharma, M. C. (2008). Hypsometric integral estimation methods and its relevance on erosion status of north-western Lesser Himalayan watersheds. Water Resources Management, 22(11), 1545– 1560. https://doi.org/10.1007/s11269-008-9242-z
- 35. Singh, W. R., Barman, S., & Tirkey, G. (2021). Morphometric analysis and watershed prioritization in relation to soil erosion in Dudhnai Watershed. Applied Water Science, 11, 151. https://doi.org/10.1007/s13201-021-01483-5
- 36. Strahler, A. N. (1945). Hypotheses of stream development in the folded Appalachians of Pennsylvania. GSA Bulletin, 56(1), 45–88. https://doi.org/10.1130/0016-7606(1945)56[45:HOSDIT]2.0.CO;2
- 37. Strahler, A. N. (1952). Dynamic basis of geomorphology. Geological Society of America Bulletin, 63(9), 923-938. https://doi.org/10.1130/0016- 7606(1952)63[923:DBOG]2.0.CO;2
- 38. Strahler, A. N. (1952). Dynamic basis of geomorphology. GSA Bulletin, 63(9), 923–938. https://doi.org/10.1130/0016- 7606(1952)63[923:DBOG]2.0.CO;2
- 39. Strahler, A. N. (1964). Quantitative geomorphology of drainage basins and channel networks. In V. T. Chow (Ed.), Handbook of applied hydrology (pp. 439–476). McGraw-Hill.
- 40. Taib, H., Hadji, R. & Hamed, Y. Erosion patterns, drainage dynamics, and their environmental implications: a case study of the hammamet basin using advanced geospatial and morphometric analysis. J. Umm Al-Qura Univ. Appll. Sci. (2023). https://doi.org/10.1007/s43994-023-00096-9
- 41. Walia, S., Singh, S., Loshali, D. C., & Kaur, P. (2018). Hypsometric analysis of the micro-watersheds with different management practices located on Shivalik foothills. Arabian Journal of Geosciences, 11, 276. https://doi.org/10.1007/s12517-018-3637-9
- 42. Xiang, L., Li, Y., Chen, H., Su, F., & Huang, X. (2015). Sensitivity analysis of debris flow along highway based on geomorphic evolution theory. Resources and Environment in the Yangtze Basin, 24(11), 1984–992. https://doi.org/10.11870/ cjlyzyyhj201511024
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e0f946c7-a839-4234-9697-c79b32cec3ed
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.