Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper we study the dynamical behavior of linear discrete-time fractional systems. The first main result is that the norm of the difference of two different solutions of a time-varying discrete-time Caputo equation tends to zero not faster than polynomially. The second main result is a complete description of the decay to zero of the trajectories of one-dimensional time-invariant stable Caputo and Riemann-Liouville equations. Moreover, we present Volterra convolution equations, that are equivalent to Caputo and Riemann-Liouvile equations and we also show an explicit formula for the solution of systems of time-invariant Caputo equations.
Rocznik
Tom
Strony
749--759
Opis fizyczny
Bibliogr. 40 poz.
Twórcy
autor
- Department of Mathematics, Le Quy Don Technical University, 236 Hoang Quoc Viet, Ha noi, Vietnam
autor
- Silesian University of Technology, Faculty of Automatic Control, Electronics and Computer Science, Akademicka 16, 44-100 Gliwice, Poland
autor
- Silesian University of Technology, Faculty of Automatic Control, Electronics and Computer Science, Akademicka 16, 44-100 Gliwice, Poland
autor
- Silesian University of Technology, Faculty of Automatic Control, Electronics and Computer Science, Akademicka 16, 44-100 Gliwice, Poland
- University of Silesia, Faculty of Mathematics, Physics and Chemistry, Bankowa 14, 40-007 Katowice, Poland
autor
- Technische Universität Dresden, Faculty of Mathematics, Zellescher Weg 12-14, 01069 Dresden, Germany
Bibliografia
- [1] T. Abdeljawad, “On Riemann and Caputo fractional differences”, Computers & Mathematics with Applications 62(3), 1602–1611 (2011).
- [2] T. Abdeljawad, D. Baleanu, F. Jarad, and R.P. Agarwal, “Fractional sums and differences with binomial coefficients”, Discrete Dynamics in Nature and Society 2013, 2013. Article ID 104173, 6 pages.
- [3] R. Abu-Saris and Q. Al-Mdallal, “On the asymptotic stability of linear system of fractional-order difference equations”, Fractional Calculus and Applied Analysis 16(3), 613–629 (2013).
- [4] J.A.D. Applelby, I. Gyori, and D.W. Reynolds, “On exact convergence rates for solutions of linear systems of Volterra difference equations”, Journal of Difference Equations and Applications12(12), 1257–1275 (2006).
- [5] F. Atici and P. Eloe, “Initial value problems in discrete fractional calculus”, Proceedings of the American Mathematical Society137(3), 981–989 (2009).
- [6] F.M. Atici and P.W. Eloe, “Linear systems of fractional nabla difference equations”, The Rocky Mountain Journal of Mathematics 41(2), 353–370 (2011).
- [7] F.M. Atici and M. Uyanik, “Analysis of discrete fractional operators”, Applicable Analysis and Discrete Mathematics 9(1), 139–149 (2015).
- [8] F.M. Atici and P. Eloe, “Discrete fractional calculus with the nabla operator”, Electronic Journal of Qualitative Theory of Differential Equations [electronic only] (3), 1–12 (2009).
- [9] A. Babiarz, A. Czornik, J. Klamka, and M. Niezabitowski (edi-tors), Theory and applications of non-integer order systems, volume 407 of Lecture Notes in Electrical Engineering. Springer International Publishing, Berlin, 2017.
- [10] M. Bohner and N. Sultana, Subexponential solutions of linear Volterra difference equations”, Nonautonomous Dynamical Systems 2, 63–76 (2015).
- [11] R. Bojanic and Y.H. Lee, “An estimate for the rate of convergence of convolution products of sequences”, SIAM Journal on Mathematical Analysis 5(3), 452–462 (1974).
- [12] M. Busłowicz, “Stability analysis of continuous-time linear systems consisting of n subsystems with different fractional orders”, Bull. Pol. Ac.: Tech. 60(2), 279–284 (2012).
- [13] J. Cermák, I. Gyori, and L. Nechvátal, “On explicit stability conditions for a linear fractional difference system”, Fractional Calculus and Applied Analysis 18(3), 651–672 (2015).
- [14] J. Cermák, T. Kisela, and L. Nechvátal, “Stability and asymptotic properties of a linear fractional difference equation”, Advances in Difference Equations 122(1), 1–14 (2012).
- [15] J. Cermák, T. Kisela, and L. Nechvátal, “Stability regions for linear fractional differential systems and their discretizations”, Applied Mathematics and Computation 219(12), 7012–7022 (2013).
- [16] N. Cong, D. Son, and H. Tuan, “On fractional Lyapunov exponent for solutions of linear fractional differential equations”, Fractional Calculus and Applied Analysis 17(2), 285–306 (2014).
- [17] N.G. de Bruijn and P. Erdös, “Some linear and some quadratic recursion formulas. I”, Indag. Math. (NS) 54 (5), 374–382 (1951).
- [18] N.G. de Bruijn and P Erdös, “On a recursion formula and on some Tauberian theorems”, J. Research Nat. Bur. Standards 50, 161–164 (1953).
- [19] S. Elaydi, “Periodicity and stability of linear Volterra difference systems”, Journal of Mathematical Analysis and Applications181(2), 483–492 (1994).
- [20] S. Elaydi, An Introduction to Difference Equations, Undergraduate Texts in Mathematics, Springer New York, third edition, 2005.
- [21] S. Elaydi and S. Murakami, “Asymptotic stability versus expo-nential stability in linear Volterra difference equations of convolution type”, Journal of Difference Equations and Applications2(4), 401–410 (1996).
- [22] R.L. Graham, D.E. Knuth, and O. Patashnik, Concrete Mathematics: A Foundation for Computer Science, Addison-Wesley, 1994.
- [23] M. Holm, The theory of discrete fractional calculus: Development and application, The University of Nebraska-Lincoln, 2011.
- [24] T. Kaczorek, “Responses of positive standard and fractional linear systems and electrical circuits with derivatives of their inputs”, Bull. Pol. Ac.: Tech. 66(4), 419–426 (2018).
- [25] T. Kisela, “An analysis of the stability boundary for a linear fractional difference system”, Mathematica Bohemica 140(2), 195–203 (2015).
- [26] S.G. Krantz, Handbook of Complex Variables. Birkhäuser Bos-ton, 2012.
- [27] S. Kukla and U. Siedlecka, “An analytical solution to the problem of time-fractional heat conduction in a composite sphere”, Bull. Pol. Ac.: Tech. 65(2), 179–186 (2017).
- [28] Y.-H. Lee, “Asymptotic properties of convolution products of sequences”, Publications de l’Institut Mathématique 31, 91–108 (1974).
- [29] F. Mertens, “Ueber die multiplicationsregel für zwei unendlichen reihen”, Journal für die reine und angewandte Mathematik 79, 182–184 (1875).
- [30] L. Nechvátal, “On asymptotics of discrete Mittag-Leffler function”, Mathematica Bohemica 139(4), 667–675 (2014).
- [31] E. Omey, “Asymptotic properties of convolution products of sequences”, Publications de l’Institut Mathématique. Nouvelle Série 36 (50), 67–78 (1984).
- [32] M. D. Ortigueira, J.T.M. Machado, and P. Ostalczyk, “Fractional signals and systems”, Bull. Pol. Ac.: Tech. 66 (4), 385–388 (2018).
- [33] I. Petráš, “Stability of fractional-order systems with rational orders: a survey”, Fractional Calculus and Applied Analysis 12 (3), 269–298 (2009).
- [34] I. Petráš, Stability of Fractional-Order Systems, pp. 55–101. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.
- [35] Z. Qin, R. Wu, and Y. Lu, “Stability analysis of fractional-order systems with the Riemann-Liouville derivative”, Systems Science & Control Engineering, 2(1), 727–731 (2014).
- [36] D. Sierociuk and W. Malesza, “Fractional variable order anti-windup control strategy”, Bull. Pol. Ac.: Tech. 66(4), 427–432 (2018).
- [37] D. Sierociuk, A. Dzielinski, G. Sarwas, I. Petras, I. Podlubny, and T. Skovranek, “Modelling heat transfer in heterogeneous media using fractional calculus”, Philosophical Transactions of the Royal Society A: Mathematical, Physical & Engineering Sciences 371 (1990), (2013).
- [38] N. Sultana, Volterra difference equations, Doctoral dissertation, Missouri University of Science and Technology, USA, 2015.
- [39] M.S. Tavazoei and M. Haeri, “A note on the stability of fractional order systems”, Mathematics and Computers in Simulation 79 (5), 1566–1576 (2009).
- [40] A Younus, I Javaid, and A Zehra, “On controllability and observability of fractional continuous-time linear systems with regular pencils”, Bull. Pol. Ac.: Tech. 65(3), 297–304 (2017).
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e0f4e67c-e591-4b8d-84e7-d2f53af80bac