PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of sodium salt of N,N-dimethyldi-thiocarbamate on the flotation separation of marmatite from galena

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An organic reagent, sodium salt of N,N-dimethyldi-thiocarbamate (DMDC) was investigated as a depressant for the separation of lead activated marmatite from galena in the presence of diethyldithiocarbamate (DDTC). The flotation tests of single mineral showed that lead-activated marmatite could be depressed efficiently using DMDC as the depressant. UV–vis spectroscopy and ICP study confirmed that DMDC had a stronger capacity of complexing with lead ions or hydroxy complexes of lead. FTIR and adsorption measurement showed that the adsorption of DMDC on galena and marmatite was chemisorption. In addition, after pre-treated with DMDC, DDTC could co-adsorb on the galena surface, however, less DDTC species adsorbed on the marmatite surfaces.
Słowa kluczowe
Rocznik
Strony
389--399
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
autor
  • School of Minerals Processing and Bioengineering, Central South University, Changsha Hunan 410083, China
autor
  • School of Minerals Processing and Bioengineering, Central South University, Changsha Hunan 410083, China
  • 15854569360@163.com
autor
  • School of Minerals Processing and Bioengineering, Central South University, Changsha Hunan 410083, China
autor
  • School of Minerals Processing and Bioengineering, Central South University, Changsha Hunan 410083, China
Bibliografia
  • T.N. KHMELEVA, W. SKINNER, D.A. BEATTIE, 2005. Depressing mechanisms of sodium bisulphite in the collectorless flotation of copper-activated sphalerite. Int. J. Miner. Process. 76(1): 43-53.
  • ZHUO CHEN, ROE-HOAN YOON, 2000. Electrochemistry of copper activation of sphalerite at pH 9.2. Int. J. Miner. Process. 58 (1) :57-66.
  • M.S. MOREY, S.R. GRANO, J. RALSTON, C.A. PRESTIDGE, B. VERITY, 2001. The electrochemistry of Pb2+ activated sphalerite in relation flotation. Miner. Eng. 14 (9) :1009-1017.
  • WJ TRAHAR, GD SENIOR, GW HEYES, MD CREED, 1997 . The activation of sphalerite by lead - a flotation perspective. Miner. Eng. 49 (3–4) :121-148.
  • D FORNASIERO, J RALSTON, 2006. Effect of surface oxide/hydroxide products on the collectorless flotation of copper-activated sphalerite. Int. J. Miner. Process. 78(4):231-237.
  • F RASHCHI, JA FINCH, C SUI, 2004. Action of DETA, dextrin and carbonate on lead-contaminated sphalerite. Colloids Surf. A. 245 (1) :21-27.
  • AP CHANDRA, AR GERSON, 2009. A review of the fundamental studies of the copper activation mechanisms for selective flotation of the sulfide minerals, sphalerite and pyrite. Adv Colloid Interface Sci. 145(1-2):97-110.
  • JIAN LIU, YU WANG, DEQIANG LUO, YONG ZENG, 2018. Use of ZnSO4 and SDD mixture as sphalerite depressant in copper flotation. Miner. Eng. 121:31–38.
  • QM FENG, R ZHOU, 2011. Flotation Separation of Sphalerite from Pb-Zn-S Bulk Concentrate Activated by Cupric Sulfate. Min. Metall. Eng. 31 (5) :32-34.
  • M.D. SEKE, PC PISTORIUS, 2006. Effect of cuprous cyanide, dry and wet milling on the selective flotation of galena and sphalerite. Miner. Eng. 19 (1) :1-11.
  • JH CHEN, ML LIANG, LH LAN, 2010. Depression effect of azo organic depressants on sulphide. Trans. Nonferrous Met. Soc. China. 20(11):2239-2247.
  • P HUANG, M CAO, Q LIU, 2012. Adsorption of chitosan on chalcopyrite and galena from aqueous suspensions. Colloids Surf. A. 409 (17) : 167-175.
  • P HUANG, M CAO, Q LIU, 2011 . Using chitosan as a selective depressant in the differential flotation of Cu–Pb sulfides. Int. J. Miner. Process. 93 (2) :8-15.
  • P HUANG, M CAO, Q LIU, 2013. Selective depression of sphalerite by chitosan in differential Pb–Zn flotation. Int. J. Miner. Process. 122 (13) :29-35.
  • P HUANG, M CAO, Q LIU, 2013. Selective depression of pyrite with chitosan in Pb–Fe sulfide flotation. Miner. Eng. s 46–47 (3) :45-51.
  • AL VALDIVIESO, TC CERVANTES, S SONG, AR CABRERA, JS LASKOWSKI, 2004. Dextrin as a non-toxic depressant for pyrite in flotation with xanthates as collector. Miner. Eng. 17 (9) :1001-1006.
  • RUI-ZENG LIU,WEN-QING QIN,FEN JIAO,XING-JIE WANG,BIN PEL,YONG-JUN YANG,CHUN-HUA LAI, 2016. Flotation separation of chalcopyrite from galena by sodium humate and ammonium persulfate. Trans. Nonferrous Met. Soc. China. 26(1):265-271.
  • DAOWEI WANG, FEN JIAO, WENQING QIN, XINGJIE WANG, 2018. Effect of surface oxidation on the flotation separation of chalcopyrite and galena using sodium humate as depressant. SEPAR SCI TECHNOL, 53(6), 961–972.
  • E BOGUSZ, SR BRIENNE, I BUTLER, SR RAO, JA FINCH, 1997. Metal ions and dextrin adsorption on pyrite. Miner. Eng. 10 (4) :441-445.
  • NJ BOLIN, JS LASKOWSKI, 1991. Polysaccharides in flotation of sulphides. Part II. Copper/lead separation with dextrin and sodium hydroxide. Int. J. Miner. Process. 33 (1–4) :235-241.
  • AJ NITOWSKI, AA NITOWSKI, JA LENT, DW BAIRLEY, DV VALKENBURG ,1997. Capillary electrophoresis as a routine industrial tool for quantitative analytical testing Determination of sodium dimethyldithiocarbamate in effluents. Journal of Chromatography A. 781 (1–2) :541-545.
  • WENQING QIN, FEN JIAO, WEI SUN, XINGJIE WANG, BEI LIU, JUN WANG, KE ZENG, QIAN WEI, KAI LIU ,2013. Effects of sodium salt of N,N-dimethyldi-thiocarbamate on floatability ofchalcopyrite, sphalerite, marmatite and its adsorption properties. Colloids Surf. A. 421(11): 181-192.
  • ZHENG-JIE PIAO, DE-ZHOU WEI, ZHI-LIN LIU, WEN-GANG LIU, SHU-LING GAO, MING-YANG LI , 2013. Selective depression of galena and chalcopyrite by O,O-bis(2,3-dihydroxypropyl) dithiophosphate. Trans. Nonferrous Met. Soc. China. 23 (10) :3063-3067.
  • PAN CHEN,JIHUA ZHAI, WEI SUN,YUEHUA HU, ZHIGANG YIN,XIANGSHENG LAI , 2017. Adsorption mechanism of lead ions at ilmenite/water interface and its influence on ilmenite flotability. Journal of Industrial and Engineering Chemistry . 53:285-293.
  • B LIU, X WANG, H DU, J LIU, S ZHENG, Y MILLER, JD , 2016. The surface features of lead activation in amyl xanthate flotation of quartz. Int. J. Miner. Process. 151 (2) :33-39.
  • HONGQIANG LI, SHUNXING MU, XIAOQING WENG, YUNLIANG ZHAO, SHAOXIAN SONG , 2016. Rutile flotation with Pb2+ ions as activator: Adsorption of Pb2+ at rutile/water interface. Colloids Surf. A. 506: 431-437.
  • PAN CHEN, JIHUA ZHAI, WEI SUN, YUEHUA HU, ZHIGANG YIN , 2017. The activation mechanism of lead ions in the flotation of ilmenite using sodium oleate as a collector. Miner. Eng. 111:100-107.
  • XIN MA,YUAN HU, HONG ZHONG, SHUAI WANG, GUANGYI LIU, GANG ZHAO, 2016 . A novel surfactant S-benzoyl-N,N-diethyldithiocarbamate synthesis and its flotation performance to galena. Applied Surface Science. 365 :342-351.
  • SUN WEI, LIU RUN-QING, CAO XUE-FENG, HU YUE-HUA, 2006. Flotation separation of marmatite from pyrrhotite using DMPS as depressant. Trans. Nonferrous Met. Soc. China. 16 (3) :671-675.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e0ee14c5-4043-41eb-b879-818122123673
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.