Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper presents design and implementation of the cellular automata (CA) model, which predicts damage of forging tools due to fatigue. The transition rules for the model were developed on the basis of known information regarding crack initiation and propagation. The coefficients in the model were determined by the inverse analysis of the thermal fatigue tests performed on the Gleeble 3800 simulator and in the special device with a rotating disc. The CA model was coupled with the conventional abrasive wear model. The layers of cell in the CA space, which are in contact with the workpiece, were removed successively following the abrasive wear of the tool. The CA model was connected with the finite element (FE) programme, which simulates stresses in tools during forging. Since this multiscale approach appeared to be extremely demanding as far as computing times are considered, an efficient implementation of the model on heterogeneous hardware architectures was prepared. Results of simulations were compared with the industrial data and good predictive capabilities of the model were confirmed.
Czasopismo
Rocznik
Tom
Strony
437--447
Opis fizyczny
Bibliogr. 34 poz., rys., tab., wykr.
Twórcy
autor
- AGH – University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland
autor
- AGH – University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland
autor
- Wrocław University of Technology, Łukaszewicza 5, 50-371 Wrocław, Poland
autor
- Wrocław University of Technology, Łukaszewicza 5, 50-371 Wrocław, Poland
autor
- AGH – University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland
Bibliografia
- [1] R.G. Bayer, Mechanical Wear Fundamentals and Testing, Marcel Dekker Inc., New York, 2004.
- [2] Z. Gronostajski, M. Kaszuba, M. Hawryluk, M. Zwierzchowski, A review of the degradation mechanisms of the hot forging tools, Archives of Civil and Mechanical Engineering 14 (2014) 528–539.
- [3] A. Kocańda, Określenie trwałości narzędzia w obróbce plastycznej metali, in: A. Piela, F. Grosman, J. Kusiak, M. Pietrzyk (Eds.), Informatyka w Technologii Metali, Wydawnictwo Politechniki Śląskiej, Gliwice, 2003 213–256 (in Polish).
- [4] S. Mozgovoy, J. Hardell, L. Deng, M. Oldenburg, B. Prakash, Effect of temperature on friction and wear of prehardened tool steel during sliding against 22MnB5 steel, Tribology – Materials, Surfaces & Interfaces 8 (2009) 65–73.
- [5] B.-A. Behrens, A. Bouguech, T. Hadifi, A. Klassen, Numerical and experimental investigations on the service life estimation for hot-forging dies, Key Engineering Materials 504–506 (2012) 163–168.
- [6] J.F. Archard, Contact and rubbing of flat surfaces, Journal of Applied Physics 24 (1953) 981–988.
- [7] P. Porda, S. Anderson, Simulating sliding wear with finite element method, Tribology International 32 (1999) 71–81.
- [8] Z. Gronostajski, S. Ziółkiewicz, M. Hawryluk, M. Kaszuba, S. Polak, K. Jaskiewicz, T. Będza, Modeling of the tool wear in TR forging of fastener, Computer Methods in Materials Science 13 (2013) 77–83.
- [9] S. Abachi, M. Akkok, M.I. Gokler, Wear analysis of hot forging dies, Tribology International 43 (2010) 467–473.
- [10] Y.-J. Kim, C.-H. Choi, A study on life estimation of hot forging die, International Journal of Precision Engineering and Manufacturing 10 (2009) 105–113.
- [11] J.H. Kang, I.W. Park, J.S. Jae, S.S. Kang, A study on a die wear model considering thermal softening. (I): Construction of the wear model, Journal of Materials Processing Technology 96 (1999) 53–58.
- [12] J.H. Kang, I.W. Park, J.S. Jae, S.S. Kang, A study on a die wear model considering thermal softening. (II): Application of the suggested wear model, Journal of Materials Processing Technology 96 (1999) 183–1888.
- [13] A. Kocańda, Z. Marciniak, On the problem of optimum temperature of warm working die, CIRP Annals – Manufacturing Technology 39 (1990) 295–297.
- [14] D.J. Jeong, D.J. Kim, J.H. Kim, B.M. Kim, T.A. Dean, Effects of surface treatment and lubricants for warm forging die life, Journal of Materials Processing Technology 113 (2001) 544–550.
- [15] O. Barrau, C. Boher, C. Vergne, F. Rezai-Aria, R. Gras, Investigations of friction and wear mechanisms of hot forging tool steels, in: 6th International Tooling Conference, Karlstad, (2002) 95–111.
- [16] M. Wilkus, S. Polak, Z. Gronostajski, M. Kaszuba, Ł. Rauch, M. Pietrzyk, Modelling of the die wear in the hot forging process using the Archard model, Computer Methods in Materials Science 14 (2014) 311–321.
- [17] T.O. Pedersen, Numerical modelling of cyclic plasticity and fatigue damage in cold-forging tools, International Journal of Mechanical Sciences 42 (2000) 799–818.
- [18] J. Lemaitre, Local approach of fracture, Engineering Fracture Mechanics 25 (1986) 523–537.
- [19] J.L. Chaboche, Continuum damage mechanics: Part II – Damage growth, crack initiation, and crack growth, Journal of Applied Mechanics 55 (1988) 65–72.
- [20] H.C. Lee, Y. Lee, S.Y. Lee, S. Choi, D.L. Lee, Y.T. Im, Tool life prediction for the bolt forming process based on high-cycle fatigue and wear, Journal of Materials Processing Technology 201 (2008) 348–353.
- [21] K. Mocellin, M. Ferraro, V. Velay, R. Logé, F. Rézaï-Aria, Numerical life prediction of mechanical fatigue for hot forging tools, International Journal on Materials Forming 2 (2009) 129–132.
- [22] I.G. Goryacheva, Multiscale modelling in contact mechanics, in: F.M. Borodich (Ed.), IUTAM Symposium on Scaling in Solid Mechanics, Springer, Cardiff, (2007) 123–134.
- [23] E. Lacoste, K. Szymanska, S. Terekhina, S. Fréour, F. Jacquemin, M. Salvia, A multi-scale analysis of local stresses development during the cure of a composite tooling material, International Journal on Materials Forming 6 (2013) 467–482.
- [24] A. Shterenlikht, 3D CAFE modeling of transitional ductile-brittle fracture in steels, (PhD thesis), The University of Sheffield, 2003.
- [25] K. Nowak, Micro- versus macro-modelling of creep damage, Computer Methods in Materials Science 9 (2009) 249–255.
- [26] Y. Shibutani, Mesoscopic dynamics on dislocation patterning in fatigued material by cellular automata, Materials Science Research International 5 (1999) 258–263.
- [27] K. Perzyński, M. Sitko, Ł. Madej, Numerical modelling of fracture based on coupled cellular automata finite element approach, in: Proc. 11th Int. Conf. on Cellular Automata for Research and Industry, ACRI 2014, Krakow, (2014) 22–25.
- [28] P. Nowak, Ł. Rauch, Efficient cellular automata model for prediction of damage of hot forging tools due to thermal fatigue, Computer Methods in Materials Science 14 (2014) 197–205.
- [29] Z. Gronostajski, M. Hawryluk, J. Krawczyk, M. Marciniak, Numerical modelling of the thermal fatigue of steel WCLV used for hot forging dies, Eksploatacja i Niezawodność – Maintenance and Reliability 15 (2013) 129–133.
- [30] Z. Gronostajski, T. Będza, M. Kaszuba, M. Marciniak, S. Polak, Modelling the mechanisms of wear in forging tools, Obróbka Plastyczna 25 (2014) 301–315.
- [31] L. Lavtar, T. Muhic, G. Kugler, M. Tercelj, Analysis of the main types of damage on a pair of industrial dies for hot forging car steering mechanisms, Engineering Failure Analysis 18 (2011) 1143–1152.
- [32] A.L. Gurson, Continuum theory of ductile rapture by void nucleation and growth, Part 1. Yield criteria and flow rules for porous ductile media, Transactions of ASME: Journal of Engineering Materials and Technology 99 (1977) 2–15.
- [33] Ł. Rauch, P. Nowak, L. Trębacz, M. Marciniak, M. Pietrzyk, Propozycja wykorzystania automatów komórkowych do modelowania inicjacji i propagacji pęknięć w wyniku zmęczenia cieplnego, Rudy i Metale Nieżelazne 58 (2013) 737–742 (in Polish).
- [34] D. Gross, T. Seelig, Fracture Mechanics: With an Introduction to Micromechanics, Springer-Verlag, Berlin/Heidelberg, 2011.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e0edd7a5-998e-43ae-9c27-9a8e0ce104a2