PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A common fixed point result by altering distances involving a contractive condition of integral type in partial metric spaces

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, we present a common fixed point theorem by altering distances for a contractive condition of integral type in partial metric spaces.
Wydawca
Rocznik
Strony
383--394
Opis fizyczny
Bibliogr. 25 poz.
Twórcy
autor
  • Université de Sousse, Institut Supérieur D'Informatique et de Technologies de Communication de Hammam Sousse, Route Gp1, Hammam Sousse-4011, Tunisie
Bibliografia
  • [1] I. Altun, A. Erduran, Fixed point theorems for monotone mappings on partial metric spaces, Fixed Point Theory Appl. (2011), Art. ID 508730, 10 pages, doi:10.1155/2011/508730.
  • [2] I. Altun, D. Turkoglu, B. E. Rhoades, Fixed points of weakly compatible maps satisfying a general contractive condition of integral type, Fixed Point Theory Appl. (2007), Art. ID 17301, 1–9.
  • [3] I. Altun, F. Sola, H. Simsek, Generalized contractions on partial metric spaces, Topology Appl. 157(18) (2010), 2778–2785.
  • [4] H. Aydi, Some fixed point results in ordered partial metric spaces, J. Nonlinear Sciences. Appl. 4(2) (2011), 210–217.
  • [5] H. Aydi, Some coupled fixed point results on partial metric spaces, Int. J. Math. Math. Sci. (2011), Article ID 647091, 11 pages doi:10.1155/2011/647091.
  • [6] H. Aydi, Fixed point results for weakly contractive mappings in ordered partial metric spaces, Journal of Advanced Mathematical and Studies, 4(2) (2011), 1–12.
  • [7] H. Aydi, Fixed point theorems for generalized weakly contractive condition in ordered partial metric spaces, Journal of Nonlinear Analysis and Optimization: Theory and Applications 2(2) (2011), 33–48.
  • [8] H. Aydi, Common fixed point results for mappings satisfying (...)-weak contractions in ordered partial metric, International Journal of Mathematics and Statistics 12(2) (2011), 53–64.
  • [9] H. Aydi, E. Karapinar, W. Shatanawi, Coupled fixed point results for (...)-weakly contractive condition in ordered partial metric spaces, Comput. Math. Appl. 62 (2011), 4449–4460.
  • [10] A. Branciari, A fixed point theorem for mappings satisfying a general contractive condition of integral type, Int. J. Math. Math. Sci. 29(9) (2002), 531–536.
  • [11] L. J. Ćirić, B. Samet, H. Aydi, C. Vetro, Common fixed points of generalized contractions on partial metric spaces and an application, Appl. Math. Comput. 218 (2011), 2398–2406.
  • [12] U. C. Gairola, A. S. Rawat, A fixed point theorem for integral type inequality, Int. J. Math. Anal. 2(15) (2008), 709–712.
  • [13] V. R. Hosseini, N. Hosseini, Common fixed point theorem by altering distance involving under a contractive condition of integral type, International Mathematical Forum 5(40) (2010), 1951–1957.
  • [14] M. S. Khan, M. Swaleh, S. Sessa, Fixed point theorems by altering distances between the points, Bull. Austral. Math. Soc. 30 (1984), 1–9.
  • [15] S. G. Matthews, Partial metric topology, in: Proc. 8th Summer Conference on General Topology and Applications, in: Ann. New York Acad. Sci. 728 (1994), 183–197.
  • [16] S. Moradi, M. Omid, A fixed point theorem for integral type inequality depending on another function, Int. J. Math. Anal. 4(30) (2010), 1491–1499.
  • [17] S. Oltra, O. Valero, Banach’s fixed point theorem for partial metric spaces, Rend. Istit. Mat. Univ. Trieste 36 (2004), 17–26.
  • [18] S. J. O’Neill, Two topologies are better than one, Tech. report, University of Warwick, Coventry, UK, http://www.dcs.warwick.ac.uk/reports/283.html, 1995.
  • [19] S. J. O’ Neill, Partial metrics, valuations and domain theory, in: Proc. 11th Summer Conference on General Topology and Applications, in: Ann. New York Acad. Sci. 806 (1996), 304–315.
  • [20] B. E. Rhoades, Two fixed-point theorems for mappings satisfying a general contractive condition of integral type, Int. J. Math. Sci. 63 (2003), 4007–4013.
  • [21] S. Romaguera, A Kirk type characterization of completeness for partial metric spaces, Fixed Point Theory Appl., Vol. 2010, Article ID 493298, 6 pages, 2010.
  • [22] S. Romaguera, M. Schellekens, Partial metric monoids and semivaluation spaces, Topology Appl. 153(5–6) (2005), 948–962.
  • [23] S. Romaguera, O. Valero, A quantitative computational model for complete partialmetric spaces via formal balls, Math. Structures Comput. Sci. 19(3) (2009), 541–563.
  • [24] M. P. Schellekens, The correspondence between partial metrics and semivaluations, Theoret. Comput. Sci. 315 (2004), 135–149.
  • [25] O. Valero, On Banach fixed point theorems for partial metric spaces, Appl. Gen. Topol. 6(2) (2005), 229–240.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e0e8f1d4-b55f-43b4-8616-70dbd66b6692
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.