Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We consider magnetic fields on R3 which are parallel to a conformal Killing field. When the latter generates a simple rotation we show that a Weyl-Dirac operator with such a magnetic field cannot have a zero mode. In particular this allows us to expand the class of non zero mode producing magnetic fields to include examples of non-trivial smooth compactly supported fields.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
537--556
Opis fizyczny
Bibliogr. 17 poz.
Twórcy
autor
- Lancaster University Fylde College Department of Mathematics and Statistics Lancaster LAI 4YF, United Kingdom
Bibliografia
- [1] C. Adam, B. Muratori, C. Nash, Zero modes of the Dirac operator in three dimensions, Phys. Rev. D 60 (1999), 125001.
- [2] C. Adam, B. Muratori, C. Nash, Degeneracy of zero modes of the Dirac operator in three dimensions, Phys. Lett. B 485 (2000), 314-318.
- [3] A.A. Balinsky, W.D. Evans, On the zero modes of Pauli operators, J. Funct. Anal. 179 (2001), 120-135.
- [4] A.A. Balinsky, W.D. Evans, On the zero modes of Weyl-Dirac operators and their multiplicity, Bull. London Math. Soc. 34 (2002), 236-242.
- [5] A.F. Beardon, The Geometry of Discrete Groups, Springer-Verlag, New York, 1983.
- [6] D.E. Blair, Inversion Theory and Conformal Mapping, American Mathematical Society, Providence, 2000.
- [7] D.M. Elton, New examples of zero modes, J. Phys. A 33 (2000), 7297-7303.
- [8] D.M. Elton, The local structure of the set of zero mode producing magnetic potentials, Commun. Math. Phys. 229 (2002), 121-139.
- [9] D.M. Elton, Asymptotics for Erdos-Solovej Zero Modes in Strong Fields, Ann. Henri Poincare 17 (2016), 2951-2973.
- [10] D.M. Elton, N.T. Ta, Eigenvalue counting estimates for a class of linear spectral pencils with applications to zero modes, J. Math. Anal. Appl. 391 (2012), 613-618.
- [11] L. Erdos, J.P. Solovej, The kernel of Dirac operators on §3 and R3, Rev. Math. Phys. 13 (2001), 1247-1280.
- [12] J. Fróhlich, E. Lieb, M. Loss, Stability of Coulomb systems with magnetic fields I. The one electron atom, Commun. Math. Phys. 104 (1986), 251-270.
- [13] D.P. Hewett, A. Moiola, On the maximal Sobolev regularity of distributions supported by subsets of Euclidean space, Anal. Appl. (Singap.) 15 (2017), 731-770.
- [14] M. Loss, H.T. Yau, Stability of Coulomb systems with magnetic fields III. Zero energy states of the Pauli operator, Commun. Math. Phys. 104 (1986), 283-290.
- [15] M. Reed, B. Simon, Methods of Modern Mathematical Physics IV: Analysis of Operators, Academic Press, San Diego, 1979.
- [16] M. Spivak, A Comprehensive Introduction to Differential Geometry, Volume 2, Publish or Perish, Houston, 1999.
- [17] B. Thaller, The Dirac Equation, Springer-Verlag, Berlin, 1992.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e0e3753d-bc8d-46eb-a401-999fe76c15f1