
Opuscula Math. 38, no. 4 (2018), 537–556
https://doi.org/10.7494/OpMath.2018.38.4.537 Opuscula Mathematica

ON THE NON-EXISTENCE OF ZERO MODES
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Abstract. We consider magnetic fields on R3 which are parallel to a conformal Killing field.
When the latter generates a simple rotation we show that a Weyl–Dirac operator with such
a magnetic field cannot have a zero mode. In particular this allows us to expand the class of
non zero mode producing magnetic fields to include examples of non-trivial smooth compactly
supported fields.
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1. INTRODUCTION

Given a magnetic potential A on R3 we can consider the Weyl–Dirac operator

DA = σ.(−i∇−A)

where σ = (σ1, σ2, σ3) are the Pauli matrices and ∇ = (∇1,∇2,∇3) is the gradient
operator. The operator DA acts on spinors, or C2 valued functions on R3. A standard
construction (see Section 7 for further details) shows that DA initially defined on
C∞0 (R3,C2) has a unique (unbounded) self-adjoint extension on H = L2(R3,C2); we
will use the same notation for both operators. A zero mode is any non-trivial ψ ∈ H
which solves DAψ = 0; in other words, a zero mode is an eigenfunction of DA with
eigenvalue 0.

The magnetic field corresponding to A is B = curlA. If two potentials A and A′
generate the same field the corresponding Weyl–Dirac operators are unitarily (gauge)
equivalent. In particular the existence of zero modes is determined by B.

Zero modes have been studied in a number of contexts in mathematical physics
including the stability of matter ([12,14]) and chiral gauge theories ([1, 2]). Most early
work concentrated on the construction of explicit examples, including the original
example ([14]), examples with arbitrary multiplicity ([2]), compact support ([7]) and
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a certain geometric property ([11]; further details below). Some subsequent work moved
toward studying the set of all zero mode producing potentials (or fields) within a given
class of potentials. More precisely, for relatively short range potentials the set of zero
mode producing potentials is nowhere dense ([3,4]) and is generically a co-dimension 1
sub-manifold ([8]; slightly different classes of potentials were considered in these works).
In particular, if A ∈ C∞ ∩ L3 the set of scalings t ∈ R for which DtA has a zero mode
is a discrete subset of R.

To further our understanding of the set of zero mode producing potentials we
can consider the problem in various asymptotic regimes. The strong field regime
corresponds to large scalings t→ +∞; a simple rescaling of the zero mode equation
shows this also corresponds to the semi-classical regime. In this context a bound can
be established for the rate at which zero mode producing scalings occur ([10]), while
the leading order asymptotics are known for certain A’s ([9]). Our ultimate goal is
to obtain the relevant leading order asymptotics for general A; in the present work
we provide some strong limitations on the form such asymptotics can take by giving
examples of non-trivial A ∈ C∞0 for which DtA does not have zero modes for any t ∈ R.
While it is known that uni-directional magnetic fields cannot support zero modes in
general ([12]), our examples appear to be the first known classes of localised zero mode
free potentials (or fields) which are invariant under scaling.

We consider magnetic potentials for which the corresponding magnetic field is
everywhere parallel to a conformal Killing field. The latter is a vector field X which
is the infinitesimal generator of a conformal symmetry. For a general metric this is
equivalent to the condition LXg = λg where g is the Riemanninan metric, LX denotes
the Lie derivative, and λ is a scalar function. On R3 (with the standard Euclidean
metric) this condition becomes

∇iXj +∇jXi = 2
3 (divX)δij . (1.1)

Conformal Killing fields on R3 form a 10-dimensional space (see Remark 1.4 and
Proposition 4.1 below). When B = curlA is parallel to such a field DA possess extra
symmetry properties which can be exploited to gain information about its spectrum.
Indeed, the construction of examples of zero mode producing fields in [11] is based on
an application of these ideas to a special conformal Killing field. By contrast, in the
present work we show that DA does not have a zero mode if B is parallel to a conformal
Killing field satisfying the extra condition

X. curlX = 0. (1.2)

Such conformal Killing fields form a 7-dimensional algebraic subset of the space of all
conformal Killing fields (see Proposition 4.2).

Theorem 1.1. Suppose X is a non-trivial conformal Killing field on R3 which satisfies
(1.2). Let A be a smooth magnetic potential for which the corresponding magnetic field
curlA is everywhere parallel to X. Then the Weyl–Dirac operator DA does not have
a zero mode.
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Remark 1.2. Clearly any constant vector field is a conformal Killing field satisfy-
ing (1.2). The previously known fact that Weyl–Dirac operators corresponding to
uni-directional magnetic fields cannot have zero modes ([12]) is thus a special case
of Theorem 1.1.

If f ∈ C∞(R2) then A(x) = f(x2
1 + x2

2, x3)(0, 0, 1) is a smooth magnetic potential
with B = curlA = −2f1(x2

1 + x2
2, x3)X where f1 is the derivative of f with respect

to its first variable and X = (−x2, x1, 0) is a conformal Killing field satisfying (1.2).
It follows that DA cannot have a zero mode. The class of such fields is invariant under
scaling. Further details are given in Example 4.6 below; another explicit class of fields
is discussed in Example 4.7.

Corollary 1.3. There exist non-trivial A ∈ C∞0 such that DtA does not have a zero
mode for any t ∈ R.

Remark 1.4. The space of conformal Killing fields is the Lie algebra corresponding to
the Lie group of conformal transformations. On R3 Liouville’s Theorem on conformal
mappings shows the latter is the same as the group of Möbius transformations (see
[6], for example). In turn, this is just the (identity component of the) 10-dimensional
indefinite orthogonal group O(1, 4) (see [5]; this group is also the symmetry group
of de Sitter space). Below we give an elementary direct argument to determine the
conformal Killing fields on R3 and identify those which satisfy (1.2) (see Propositions
4.1 and 4.2).

Remark 1.5. Stereographic projection gives a conformal equivalence between the
3-dimensional sphere S3 and R3; the corresponding spaces of conformal Killing fields
are then isomorphic. It follows that rotations of S3, or equivalently R4, give rise to
conformal Killing fields on R3. A general rotation of R4 can be decomposed into
independent rotations in a pair of orthogonal 2-dimensional planes. An isoclinic
rotation of R4 is one in which the angles of the independent rotations are equal; the
corresponding conformal Killing fields on R3 underlie the work of [11]. On the other
hand, a simple rotation of R4 is one in which one of the independent rotations is
trivial; the corresponding conformal Killing fields on R3 satisfy (1.2). See Remark 4.8
for some further discussion.

The conformal invariance of the Dirac operator means we could view our results
and arguments in the setting of S3. Such a viewpoint is partially adopted in [11]
and [9], but requires a substantial amount of differential geometric language. In the
present work we aim to keep arguments more accessible by working in R3 using direct
calculations.

Key to our argument is the fact that, when B is parallel to a conformal Killing
field X, it is possible to differentiate spinors in the direction parallel to X in a way
that commutes with DA; this directional derivative is given by the operator Q defined
at the start of Section 5, while the commutativity property is given in Proposition 5.2.
When X satisfies (1.2) and our spinor is a zero mode of DA we can further show this
directional derivative must be 0; Proposition 5.3 gives the necessary norms bounds,
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while regularity issues associated to the applicability of these bounds are dealt with in
Section 7. On the other hand, by studying Q on the closed integral curves of X, we can
show this operator cannot have 0 as an eigenvalue; see Proposition 6.1. Preliminaries for
the analysis of Q along the integral curves are covered in Section 3. Various identities
relating to conformal Killing fields are collected in Section 2, while in Section 4 we
explicitly determine the fields satisfying (1.2) and eliminate those which cannot be
parallel to a magnetic field. The various pieces of our argument are pulled together in
Section 8.

In general vectors in R3 are denoted by upper case or bold lower case letters; for
example X = (X1, X2, X3) and x = (x1, x2, x3). Also e3 = (0, 0, 1) denotes the unit
vector parallel to the x3-axis. The Roman letters i, j, k, . . . are used for indices taking
values in {1, 2, 3}; repeated indices imply summation over this set. For any vector field
X we set ∇X = X.∇ = Xi∇i. Let δij denote the Kronecker delta and εijk the totally
anti-symmetric tensor; in particular σiσj = δijI2 + iεijkσk, so

(a.σ)(b.σ) = a.bI2 + i(a × b).σ, a,b ∈ R3. (1.3)

Note that εijkεlmk = δilδjm − δimδjl, which leads to the vector triple product formula

a × (b× c) = (a.c)b− (a.b)c, a,b, c ∈ R3. (1.4)

We use |·| for the standard norm in any finite dimensional vector space. The
standard inner products in R3 and C2 will be denoted by a dot and 〈·, ·〉 respectively.
For a sequence {ψn}n∈N indexed by N we simply write ψn → ψ to indicate a limit
as n→∞.

2. CONFORMAL KILLING FIELDS

Let X be a conformal Killing field on R3. Set ω = |X|, Y = curlX and Z = X×Y . In
this section we collect some identities for X, Y and Z which follow directly from (1.1).
A number of these involve powers of ω; in such cases we consider the identities on the
open set

ΩX = R3 \ {x ∈ R3 : ω(x) = 0}. (2.1)
From (1.1) we get

∇X ωα = α

2 ω
α−2∇X ω2 = α

2 ω
α−2XiXj(∇iXj +∇jXi) = α

3 (divX)ωα (2.2)

for any α ∈ R. Multiplying (1.1) by Xi and summing over i also leads to

∇XX = −1
2∇ω

2 + 2
3 (divX)X, (2.3)

and thus
(X ×∇)ω2 = −2X ×∇XX. (2.4)

Using (1.4)
X × Z = (X.Y )X − ω2Y. (2.5)
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Since Y = ∇×X we can use the same identity and (2.3) to get

Z = X × Y = Xi∇Xi −∇XX = −2∇XX + 2
3 (divX)X, (2.6)

so X × Z = −2X ×∇XX = (X ×∇)ω2 with the help of (2.4). Comparing this with
(2.5) we now get

(X ×∇)ω = 1
2 ω
−1(X ×∇)ω2 = 1

2 ω
−1(X.Y )X − 1

2 ωY. (2.7)

We can also rewrite (2.6) to get

∇XX = 1
3 (divX)X − 1

2Z. (2.8)

Comparison with (2.3) then leads to

∇ω2 = 2
3 (divX)X + Z. (2.9)

Using (1.1) twice we get

∇iYj +∇jYi = εjkl∇k∇iXl + εikl∇k∇jXl

= −εjkl∇k∇lXi + 2
3εjkl∇k(divX)δil

− εikl∇k∇lXj + 2
3εikl∇k(divX)δjl

= 2
3εjki∇k(divX) + 2

3εikj∇k(divX) = 0,

(2.10)

while div Y = div curlX = 0. It follows that Y is a Killing field (that is, satisfies (1.1)
with 0 on the right hand side).

Now suppose {α, β, γ} = {1, 2, 3}. Then, with no summation over indices,

Yα
(
∇γXα −∇αXγ

)
= εαβγYαYβ =

(
∇βXγ −∇γXβ

)
Yβ .

Hence

Yα∇γXα + Yβ∇γXβ + Yγ∇γXγ = Yα∇αXγ + Yβ∇βXγ + Yγ∇γXγ

or, returning to the summation convention,

Yi∇Xi = ∇YX. (2.11)

Combined with (2.10) we then get

∇(X.Y ) = Yi∇Xi +Xi∇Yi = ∇YX −∇XY

(the Lie bracket of X and Y ). On the other hand, (2.11) and (1.1) give

∇YXk = Yi∇kXi = −∇YXk + 2
3 (divX)Yk.
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Thus ∇YX = 1
3 (divX)Y and hence

∇XY = 1
3 (divX)Y −∇(X.Y ). (2.12)

By (1.1)

∆Xj = ∇i∇iXj = −∇i∇jXi + 2
3∇j(divX) = −1

3∇j(divX), (2.13)

and hence

∇kYl = εlmn∇m∇kXn = −εlmn∇m∇nXk + 2
3εlmk∇m(divX) = −2εklm∆Xm.

Thus
∇XY = 2X ×∆X. (2.14)

Since Zk = εkijXiYj and εkijεklm = δilδjm − δimδjl we also get

∇ZYl = −2XlYm∆Xm + 2Xm∆XmYl = 2(X.∆X)Yl − 2(Y.∆X)Xl. (2.15)

3. SIMPLE ROTATIONS

We now suppose the conformal Killing field X satisfies (1.2), namely X.Y = 0. Then
X, Y and Z are mutually orthogonal while

|Z| = ω|Y | and X × Z = −ω2Y (3.1)

by (2.5). Thus the normalised vector fields X̂ = ω−1X, Ŷ = |Y |−1Y and Ẑ = |Z|−1Z
provide an orthonormal frame on ΩX ∩ ΩY . Also (2.9) gives

|∇ω|2 = 1
4 ω
−2|∇ω2|2 = 1

9 (divX)2 + 1
4 |Y |

2, (3.2)

while (2.14) and (2.12) lead to

X ×∆X = 1
2∇XY = 1

6 (divX)Y =⇒ X × (X ×∆X) = 1
6 (divX)Z.

However X × (X ×∆X) = (X.∆X)X − ω2∆X by (1.4), so

ω2Y.∆X = Y.
[
(X.∆X)X − 1

6 (divX)Z
]

= 0.

Thus (2.12) and (2.15) simplify to

∇XY = 1
3 (divX)Y and ∇ZY = 2(X.∆X)Y, (3.3)

so ∇XY and ∇ZY are parallel to Y . It follows that ∇
X̂
Ŷ = 0 = ∇

Ẑ
Ŷ on ΩX ∩ ΩY .

If P ∈ R3 we have P = (P.X̂)X̂ + (P.Ẑ)Ẑ + (P.Ŷ )Ŷ , and hence

∇P Ŷ = (P.Ŷ )∇
Ŷ
Ŷ . (3.4)

Note that ∇
Ŷ
Ŷ is smooth on ΩX ∩ΩY so bounded by a constant CK on any compact

set K ⊂ ΩX ∩ ΩY .



On the non-existence of zero modes 543

Lemma 3.1. Let x0 ∈ ΩX ∩ΩY . Set N = Ŷ (x0) and P = {x ∈ R3 : (x−x0).N = 0}
(the plane through x0 with normal N). Then X(x).N = 0 for all x ∈ P.
Proof. Suppose P.N = 0 for some P ∈ R3. Set γ(t) = x0 + tP ∈ P for t ∈ R, and
choose τ > 0 so that K = γ([0, τ ]) ⊂ ΩX ∩ ΩY . By (3.4)

d
dt Ŷ (γ(t)) = ∇γ′(t)Ŷ (γ(t)) = P.Ŷ (γ(t))∇

Ŷ
Ŷ (γ(t)) (3.5)

and hence ∣∣∣∣
d
dtP.Ŷ (γ(t))

∣∣∣∣ ≤ CK |P |
∣∣P.Ŷ (γ(t))

∣∣.

Since P.Ŷ (γ(0)) = P.N = 0 it follows that P.Ŷ (γ(t)) = 0 for all t ∈ [0, τ ]. Hence
the right hand side of (3.5) is 0, and so Ŷ (x) = Ŷ (γ(0)) = N for all x ∈ γ([0, τ ]).
This clearly extends to all x in P0, the path connected component of ΩX ∩ ΩY ∩ P
containing x0. Thus P.Y = 0 on P0. However P.Y is harmonic (this follows easily from
the fact that Y is a Killing field). Unique continuation (see [15, Theorem XIII.63], for
example) now implies P.Y = 0 on P . Since this holds for all P ∈ R3 with P.N = 0 we
must have that Y is parallel to N on P , so X.N = 0 on ΩY ∩P by (1.2). However X.N
is smooth while ΩY ∩ P is dense in P (again by unique continuation). Thus X.N = 0
on P.

We now consider integral curves of the vector field X (these are the magnetic
field lines when B is parallel to X). Suppose γ : I → R3 is such a curve. Then
γ′(t) = X(γ(t)) and γ′′(t) = (d/dt)X(γ(t)) = ∇XX(γ(t)) so, using (2.8) and (3.1),

γ′(t)× γ′′(t) = X ×∇XX = −1
2X × Z = 1

2 ω
2Y. (3.6)

Likewise (d/dt)Y (γ(t)) = ∇XY (γ(t)) = f(t)Y (γ(t)) where f(t) = 1
3 divX(γ(t))

by (3.3). As f is smooth it follows that, on γ, Y is either nowhere 0 or identically
equal to 0. In the latter case (3.6) then implies γ′′(t) is parallel to γ′(t); hence γ is
a straight line so, in particular, cannot be closed.

Now suppose γ is a closed integral curve of X with (minimal) period τ . Thus γ
lies in ΩX ∩ ΩY . The fact that (d/dt)Y (γ(t)) is parallel to Y (γ(t)) then implies Ŷ is
constant on γ. Denote this constant vector by N and let P be as given in Lemma 3.1
for some x0 lying on γ. It follows that γ lies in the plane P.

We need the integrals of three quantities around γ. Using (2.2) we get

(divX)(γ(t)) = 3(ω−1∇X ω)(γ(t)) = 3|γ′(t)|−1 d
dt |γ

′(t)| = 3 d
dt log|γ′(t)|,

so
τ∫

0

(divX)(γ(t)) dt = 0. (3.7)

Next, the (signed) curvature of γ is given as

κ(t) = |γ′(t)|−3N.(γ′(t)× γ′′(t)) = 1
2 (ω−1Ŷ .Y )(γ(t)) = 1

2 (ω−1|Y |)(γ(t)).
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Since we traverse the simple closed loop γ once for t ∈ [0, τ ] the Hopf Umlaufsatz (see
[16, Theorem 1.7], for example) gives

∫ τ
0 κ(t) |γ′(t)|dt = ±2π. It follows that

τ∫

0

|Y (γ(t))|dt = 4π. (3.8)

Finally suppose curlA is everywhere parallel to X for some smooth A. Let Ω denote
the region of the plane P bounded by γ. Using the Kelvin-Stokes theorem we get

τ∫

0

X.A(γ(t)) dt =
τ∫

0

γ′(t).A(γ(t)) dt =
∮

γ

A.dγ =
∫∫

Ω

(curlA).dΩ.

Now dΩ is parallel to N while curlA is parallel to X. However X.N = 0 on P
by Lemma 3.1. Thus

τ∫

0

X.A(γ(t)) dt = 0. (3.9)

(This shows the overall flux of the magnetic field B = curlA through γ is zero.)

4. CHARACTERISATION AND ADMISSIBLE FIELDS

We begin by explicitly identifying all conformal Killing fields on R3. Clearly the set of
conformal Killing fields is a linear space.
Proposition 4.1. On R3 the space of conformal Killing fields is 10-dimensional. More
precisely, X is a conformal Killing field iff

X = a + b0x + b× x + (c.x)x− 1
2 |x|

2c (4.1)

for some b0 ∈ R and a,b, c ∈ R3.

Proof. A straightforward calculation shows that anything of the form (4.1) is a con-
formal Killing field.

Allowing all choices {α, β, γ} = {1, 2, 3} (1.1) is equivalent to

∇αXα = ∇βXβ , (4.2a)
∇αXβ = −∇βXα. (4.2b)

For second order derivatives we can combine (4.2a) and (4.2b) to get

∇2
αXα = ∇α∇βXβ = −∇2

βXα. (4.3a)

Repeated use of (4.2b) gives ∇α∇βXγ = −∇α∇γXβ = ∇β∇γXα = −∇α∇βXγ so

∇α∇βXγ = 0. (4.3b)
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Combining (4.3a) and (4.2a) we get ∇3
αXα = −∇α∇2

βXα = −∇3
βXβ . Since this holds

for all choices of α and β we must have

∇3
αXα = ∇2

α∇βXβ = 0.

Using (4.2a) and (4.3b) we also get

∇2
α∇βXα = ∇α∇β∇γXγ = 0.

It follows that all third order derivatives of X are identically 0. Hence X is completely
determined by the values of its first two derivatives at 0. Set

aα = Xα(0), b0 = ∇αXα(0), bα = εαβγ∇βXγ(0) and cα = ∇2
αXα(0).

Note that, (4.2) shows the definitions of b0 and b are consistent, while the remaining
second order derivatives can be expressed in terms of c using (4.3). It is straightforward
to check that X is now given by (4.1).

It is now straightforward to identify which conformal Killing fields satisfy (1.2).
Proposition 4.2. The conformal Killing fields satisfying (1.2) are those given as

X = a + b0x, X = b× (x− x0) or X = νc + c.(x− x0)(x− x0)− 1
2 |x− x0|2c

for some a,b, c,x0 ∈ R3 and b0, ν ∈ R.
Proof. Suppose X is given by (4.1). Then Y = 2b + 2c× x so

X.Y = 2a.b + 2a.(c× x) + 2b0b.x + 2(b× x).(c× x) + 2(c.x)(b.x)− |x|2b.c
= 2a.b + 2(a × c + b0b).x + (b.c)|x|2.

Thus (1.2) is equivalent to

a.b = 0 = c.b and b0b = c× a.

The first case arises if b = c = 0. If c = 0 but b 6= 0 then we must have b0 = 0 and
a.b = 0 so a = −b× x0 where x0 = |b|−2b× a; this corresponds to the second case.

Now suppose c 6= 0. Set x0 = |c|−2(c× b− b0c) so b0 = −c.x0 and b = −c× x0
since b.c = 0. Hence |c|2|x0|2 = b20 + |b|2 while c× (a + b0x0) = 0, leading to

0 = c×
(
c× (a + b0x0)

)
=⇒ a = |c|−2(c.a)c− |c|−2b20c− b0x0.

Then

c.(x− x0)(x− x0)− 1
2 |x− x0|2c

= (c.x0)x0 − 1
2 |x0|2c−

(
(c.x)x0 + (c.x0)x− (x0.x)c

)
+ (c.x)x− 1

2 |x|
2c

= −b0x0 − 1
2 |c|

−2(|b|2 + b20)c + b0x + b× x + (c.x)x− 1
2 |x|

2c.

The third case formula for X now follows if we take ν = 1
2 |c|

−2(2a.c + |b|2 − b20
)
.
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Several of the fields given in Proposition 4.2 have isolated fixed points. In these
cases (almost all) integral curves converge to these fixed points as t→ +∞ or t→ −∞;
this can be seen by considering the possible cases.

If b0 6= 0 in the first type of field given in Proposition 4.2 we can writeX = b0(x−x0)
with x0 = −b−1

0 a. This (monopole) field has a single isolated fixed point at x0, with
γ(t)→ 0 as either t→ −∞ or t→ +∞ for all integral curves γ (the sign depends on
the sign of b0).

If ν < 0 in the third type of field then X has isolated fixed points at x0 ±
|c|−1|2ν|1/2c. All integral curves converge to one fixed point as t→ −∞ and the other
as t → +∞, with the exception of those curves which are half lines along the axis
parallel to c and passing through x0 (these approach a fixed point in one direction
and have finite time blow up in the other).

When ν = 0 these isolated fixed points merge into a single fixed point at x0 (dipole
field). All integral curves converge to x0 in both directions, with the exception of those
along the axis parallel to c and passing through x0.

In the next result we show that if almost all integral curves of X converge to
a fixed point then there are no smooth non-trivial magnetic fields which are everywhere
parallel to X. We can view this as a consequence of the fact that magnetic fields are
divergence free so cannot contain any magnetic monopoles.

Lemma 4.3. Let X be a non-trivial conformal Killing field and suppose that for
a dense set of points x in R3, the integral curve of X passing through x converges
(to a point in R3) as either t → +∞ or t → −∞. If B is a smooth magnetic field
which is everywhere parallel to X then we must have B ≡ 0.

Proof. We can write B = fX for some f ∈ C∞(ΩX). Using (2.2) we get

∇X(f ω3) = ω3(∇Xf + f divX
)

= ω3 div(fX) = ω3 divB = 0.

Hence f ω3 is constant on each integral curve of X.
Suppose x0 is a fixed point of X and γ is a non-stationary integral curve of X with

γ(t)→ x0 as t→ +∞. For x near x0 we have ω(x) ≤ C|x− x0| for some constant C.
Then ω(γ(t)) ≤ C|γ(t)− x0| for all sufficiently large t, so

ω−2(γ(t)) ≥ C−2|γ(t)− x0|−2 → +∞

as t → +∞ (not that, the left hand side is finite for all t as γ is non stationary).
However (f ω3)(γ(t)) = βγ for some constant βγ , so

|B(γ(t))| = |f(γ(t))| ω(γ(t)) = |βγ | ω−2(γ(t)),

while B is smooth, so B(γ(t))→ B(x0) as t→ +∞. To avoid a contradiction we must
take βγ = 0. Hence f(γ(t)) = 0 for all t; that is, f is identically 0 on the integral
curve γ. A similar argument applies if γ(t)→ x0 as t→ −∞.

As the integral curves which converge as either t → +∞ or t → −∞ are dense
in R3 we now get f = 0 and hence B = 0 on a dense subset of R3. Since B is smooth
we then get B ≡ 0.
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As we are interested in magnetic fields which are parallel to a conformal Killing
field X satisfying (1.2), Lemma 4.3 shows that we may further assume X has no
isolated fixed points; we shall call such fields admissible.

We consider three particular admissible fields defined as

U = e3 = (0, 0, 1), V = e3 × x = (−x2, x1, 0)

and

Wµ = 1
2µ

2e3 + (e3.x)x− 1
2 |x|

2e3 = 1
2
(
2x1x3, 2x2x3, µ

2 − x2
1 − x2

2 + x2
3
)

for µ > 0. With an appropriate choice of origin and orientation in R3 any admissible
field can be reduced to a scaled copy of one of these fields; it follows that, when
considering admissible fields, it is sufficient to work with just these examples.

Remark 4.4. Suppose we can find one (smooth) magnetic potential A′ with curlA′
parallel to X and X.A′ = 0. Now let f ∈ C∞ be any function which is constant
on the integral curves of X, that is ∇Xf = 0. Then (1.4) gives X × (∇f × A′) =
(X.A′)∇f − ∇XfA′ = 0, so ∇f × A′ is parallel to X. However, setting A = fA′

we have
B = curlA = f curlA′ +∇f ×A′.

Thus the magnetic potential A = fA′ also generates a field which is parallel to X.

Example 4.5. We have divU = 0, curlU = 0 and ω = 1 so ΩU = R3. The integral
curves of U are of the form γ(t) = x0 + te3 for some x0 ∈ R3; all are parallel to
the x3-axis.

Magnetic fields parallel to U are uni-directional. We can clearly generate such
fields by taking A = f(x1, x2)V for some f ∈ C∞(R2) (this corresponds to Remark
4.4 with A′ = V ).

Example 4.6. We have divV = 0, curlV = 2e3 and ω2 = x2
1 +x2

2, so ΩV = R3 \Re3
(that is, R3 with the x3-axis removed). Note that, ω−1 ∈ L1

loc.
It is straightforward to check that the integral curves are all of the form

γ(t) = ρ
(
cos(t− t0), sin(t− t0), 0

)
+ (0, 0, β)

for some ρ ≥ 0 and t0, β ∈ R. The integral curves are circles centred on and perpen-
dicular to the x3-axis. All integral curves are periodic with period 2π. Each point on
the x3-axis is a stationary integral curve.

Magnetic fields parallel to V circulate about the x3-axis. For any µ, curlWµ = 2V
and V.Wµ = 0; thus we can generate such fields using Remark 4.4 with A′ = Wµ.
Alternatively we can take A′ = U , as in the discussion preceding Corollary 1.3.
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Example 4.7. We have divWµ = 3x3, curlWµ = 2e3 × x and

ω2 = 1
4 (µ2 − |x|2)2 + µ2x2

3 = 1
4 (µ2 + |x|2)2 − µ2(x2

1 + x2
2),

so ΩWµ
= R3 \ S1

µ where S1
µ is the circle in the x1, x2-plane with centre 0 and radius µ.

Note that, ω−1 ∈ L1
loc.

The x3-axis, parametrised as γ(t) = (0, 0, µ tan(µ(t − t0)/2)) for t0 ∈ R, is one
integral curve; note that

γ′(t) = 1
2
(
0, 0, µ2(1 + tan2(µ(t− t0)/2))

)
= Wµ(γ(t)).

The remaining integral curves are circles in planes passing through the x3-axis. Let

z(t) = r(t) + ix3(t) = µ
1 + ρe−iµt

1− ρe−iµt = µ
1− ρ2 − 2iρ sin(µt)
1 + ρ2 − 2ρ cos(µt)

for some ρ ∈ [0, 1). Then

z′(t) = −2iµ2 ρe−iµt

(1− ρe−iµt)2 = −1
2 i(z2(t)− µ2)

so r′(t) = r(t)x3(t) and x′3(t) = 1
2 (µ2 + x2

3(t)− r2(t)). If θ, t0 ∈ R it follows that

γ(t) = r(t− t0)(cos θ, sin θ, 0) + (0, 0, x3(t− t0))

is an integral curve of Wµ, lying in the plane which includes the x3-axis and makes
an angle of θ with the x1-axis. All integral curves are periodic with period 2π/µ.

Magnetic fields parallel to Wµ form loops linking with the circle S1
µ. Let A′ =

(µ2 + |x|2)−2V . Then Wµ.A
′ = 0 while, with the help of (1.4),

curlA′ = 2(µ2 + |x|2)−2e3 − 4(µ2 + |x|2)−3 x× (e3 × x) = 4(µ2 + |x|2)−3Wµ;

this is clearly parallel to Wµ. We can now use Remark 4.4 to generate further magnetic
fields which are parallel to Wµ.

Remark 4.8. If we use (inverse) stereographic projection to move the fields V and
W1 to S3 we get the generators of simple rotations in orthogonal 2-dimensional planes.
More generally, non-constant admissible fields X can be linked to simple rotations
of S3; this link can be used to give an alternative justification of the fact that the
integral curves of X are planar (see the discussion after (3.6)).

By contrast the conformal Killing field V +W1 corresponds to an isoclinic rotation
of S3 (the integral curves are the fibres of the Hopf fibration of S3); the zero mode
examples considered in [11] have magnetic fields which are parallel to V +W1.
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5. SYMMETRIES

Let X be a conformal Killing field and suppose A is a magnetic potential such that
B = curlA is everywhere parallel to X. Introduce operators

Q = X.(−i∇−A) + 1
4σ.Y −

2
3 i divX and S = ω−1σ.X;

both act on spinors.
Remark 5.1. The operator Q is the component of the spin connection in the direction
of the magnetic field, while S is the spin operator in this direction (a spinor ψ has
spin direction parallel to X iff it satisfies Sψ = ±ψ).

Recalling (2.1), set C∞X = C∞(ΩX) and C∞X,0 = C∞0 (ΩX); in particular, no
restriction is placed on the limiting behaviour of functions in C∞X as we approach
{x : ω(x) = 0}, while functions in C∞X,0 can be extended by 0 to give an inclusion
C∞X,0 ↪→ C∞0 (R3). We use the same notation for the spinor versions of these spaces
(that is, C∞X ⊗ C2 and C∞X,0 ⊗ C2).

The operators DA, Q and S satisfy some basic (anti-)commutator relations. It is
enough to work with spinors from C∞X .
Proposition 5.2. The following (anti-)commutator relations hold on C∞X :
(i) [DAω,Q] = 0,
(ii) [Q,S] = 0,
(iii) {DAω, S} = 2Q+ 1

2 ω
−1X.Y S.

Note that, by DAω we mean the operator composition given by φ 7→ DA(ωφ).

Proof. We have [−i∇i −Ai,−i∇j −Aj ] = −iεijkBk so

[DA, X.(−i∇−A)] = −iσi(∇iXj)(−i∇j −Aj) + iσ.(X ×B)
= −iσi(∇iXj)(−i∇j −Aj)

(5.1)

since B is parallel to X. Next note that for any vectors of operators F and G

[σ.F, σ.G] = σiσjFiGj − σjσiGjFi = [Fi, Gi] + iεijkσk{Fi, Gj}. (5.2)

Since εijkεjlm = δklδim − δkmδil we get

εijk{−i∇i −Ai, Yj} = εijkεjlm{−i∇i −Ai,∇lXm}
= 2(∇kXi −∇iXk)(−i∇i −Ai)− i(∇i∇kXi −∇i∇iXk)

= 4(∇kXi)(−i∇i −Ai)− 4
3 (divX)(−i∇k −Ak)− i4

3∇k(divX)

with the help of (1.1). Combined with (5.2) it follows that

[DA, σ.Y ] = [−i∇i −Ai, Yi] + iεijkσk{−i∇i −Ai, Yj}
= −i div Y + iεijkσk{−i∇i −Ai, Yj}
= 4iσk(∇kXi)(−i∇i −Ai)− i4

3 (divX)DA + 4
3σ.∇(divX).

(5.3)
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Note that [DA,divX] = −iσ.∇(divX). Combined with (5.1) and (5.3) we now get

[DA, Q] = −1
3σ.∇(divX)− i1

3 (divX)DA = −i1
3DA

(
(divX) ·

)
.

However
[Q, ω] = −i∇X ω = −i1

3 (divX)ω

by (2.2). Combining the previous two equations we finally get

[DAω,Q] = [DA, Q]ω −DA
(
[Q, ω] ·

)
= −i1

3DA
(
(divX)ω − (divX)ω

)
= 0.

With the help of (2.2)

[X.(−i∇−A), S] = −i
[
∇X , ω−1σ.X

]
= i1

3 (divX)ω−1σ.X − iω−1σi∇XXi. (5.4)

On the other hand, (1.3) and (2.6) lead to

[σ.Y, S] = 2iω−1σ.(Y ×X) = 4iω−1σi∇XXi − i4
3 (divX)S.

Since S clearly commutes with (multiplication by) divX we can now combine this
with (5.4) and (5) to get [Q,S] = 0.

For the final part (1.3) helps give

{S,DAω} = ω−1σiσjXi(−i∇j −Aj)(ω · ) + σjσi(−i∇j −Aj)
(
Xi ·

)

= (σiσj + σjσi)Xi(−i∇j −Aj)− iω−1σiσjXi∇j ω − iσjσi∇jXi

= 2X.(−i∇−A)− iω−1∇X ω − i divX + ω−1σ.(X ×∇ω) + σ.Y

= 2X.(−i∇−A)− i4
3 divX + 1

2σ.Y + 1
2 ω
−1X.Y S,

where (2.2) and (2.7) have been used in the last step.

The commutator relations given in Proposition 5.2 lead naturally to a weighted
version of L2. Let HX denote the set of spinors φ : R3 → C2 satisfying

∫
|φ(x)|2ω(x) d3x < +∞.

We denote the corresponding norm and inner product by ‖·‖X and 〈·, ·〉X respectively.
Note that C∞X,0 is dense in HX .

Since DA defined on C∞0 is symmetric in H, DAω defined on C∞X,0 is symmetric
in HX . We can use (2.2) to help calculate the formal adjoint of Q in HX as

Q∗ = ω−1(−i∇−A).(ωX · ) + 1
4Y.σ + 2

3 i divX

= X.(−i∇−A)− iω−1∇X ω − i divX + 1
4Y.σ + 2

3 i divX = Q.
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It follows that Q defined on C∞X,0 is also symmetric in HX . The operator S is bounded
and self-adjoint on both H and HX .

Define operators
Π± = 1

2 (I2 ± S).

Clearly Π+ + Π− = I2 while the identity S2 = I2 means Π+ and Π− are pointwise
projections on C2 as well as complementary orthogonal projections onHX . Furthermore
Π±S = ±Π± while Π± commutes with multiplication by scalar functions. On C∞X
Proposition 5.2(ii) gives [Π±, Q] = 0 while

Π±DAωΠ± = 1
4 (S ± I2)(SDAω +DAωS) = ±1

2Π±{S,DAω}. (5.5)

Let T± = Π±DAωΠ∓ denote the “off-diagonal” components of DA. By Propo-
sition 5.2(i)

T∓Π±Q = Π∓DAωQΠ± = Π∓QDAωΠ± = QΠ∓T∓.

For φ, ψ ∈ C∞X,0 the above observations now lead to 〈φ, T±ψ〉X = 〈T∓φ, ψ〉X ,

〈Π±Qφ, T±ψ〉X = 〈T∓Π±Qφ,ψ〉X = 〈T∓φ,Π∓Qψ〉X (5.6)

and
‖Π+φ+ Π−ψ‖2X = ‖Π+φ‖2X + ‖Π−ψ‖2X . (5.7)

The addition of condition (1.2) allows an important simplification in Proposition
5.2(iii); this leads to the following.

Proposition 5.3. Suppose X satisfies (1.2). For all φ ∈ C∞X,0 we have

‖DAωφ‖2X = ‖T+φ‖2X + ‖T−φ‖2X + ‖Qφ‖2X .

Proof. By Proposition 5.2(iii) {S,DAω}φ = 2Qφ. Since Π+ + Π− = I2 and Π2
± = Π±,

(5.5) now leads to

DAωφ = Π+DAωΠ+φ+ Π+DAωΠ−φ+ Π−DAωΠ+φ+ Π−DAωΠ−φ
= Π+

(
Qφ+ T+φ

)
+ Π−

(
T−φ−Qφ

)
.

Using (5.7) it follows that

‖DAωφ‖2X = ‖Π+Qφ+ T+φ‖2X + ‖T−φ−Π−Qφ‖2X
= ‖T+φ‖2X + ‖T−φ‖2X + ‖Π+Qφ‖2X + ‖Π−Qφ‖2X

+ 2 Re〈Π+Qφ, T+φ〉X − 2 Re〈T−φ,Π−Qφ〉X .

The terms in the final line cancel by (5.6). The result now follows from (5.7).
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6. EIGENVALUES OF Q

Although we have not defined Q as a(n unbounded) self-adjoint operator we are able
to limit potential eigenvalues when the integral curves of X are closed loops.
Proposition 6.1. Suppose the conformal Killing field X satisfies (1.2) and has a closed
integral curve γ of period τ . Also suppose Qφ = λφ for some φ ∈ C∞X and constant λ.
If φ is non-trivial on γ then λ ∈ (2Z + 1)τ−1π; in particular, λ 6= 0.
Proof. From the discussion after (3.6) we know that γ lies in a plane P with normal
N where N = Ŷ (γ(t)) for any t. Choose θ0 ∈ C2 with σ.Nθ0 = θ0 and |θ0|2 = 2. Set
θ± = Π±θ0. For any P ∈ R3 (1.3) leads to

〈θ0, σ.Pθ0〉 = 1
2
〈
θ0, (σ.Nσ.P + σ.Pσ.N)θ0

〉
= 2N.P. (6.1)

We now work on (the image of) γ. Then 〈θ0, Sθ0〉 = 0 by (1.2) and (6.1), so

|θ±|2 = 〈θ0,Π±θ0〉 = 1
2 〈θ0, (I ± S)θ0〉 = 1.

As Z.Y = 0 (1.3) and (6.1) also lead to 〈θ0, Sσ.Y θ0〉 = ω−1〈θ0, (X.Y + iσ.Z)θ0〉 = 0.
Combined with a further use of (6.1) we then get

〈θ0,Π±σ.Y θ0〉 = 1
2 〈θ0, (I ± S)σ.Y θ0〉 = N.Y = |Y |.

Since Qθ± = Π±Qθ0 while θ0 is constant we now have

〈θ±, Qθ±〉 = 1
4 〈θ0,Π±σ.Y θ0〉 −

(2
3 i divX +X.A

)
〈θ±,Π±θ0〉

= 1
4 |Y | −

2
3 i divX −X.A.

Set φ± = Π±φ. Since [Q,S]φ = 0 by Proposition 5.2(ii) we have Qφ± = λφ±. At
any x ∈ ΩX the range of Π± in C2 is a 1-dimensional space spanned by the non-zero
vector θ±. Thus we can write φ±(γ(t)) = u±(t) θ±(γ(t)) for some u± : R→ C. Then
Qφ± = −i(d/dt)u± θ± + u±Qθ± so

〈θ±, Qφ±〉 = −i d
dtu± +

(1
4 |Y | −

2
3 i divX −X.A

)
u±.

On the other hand λφ± = λu±θ± so 〈θ±, λφ±〉 = λu±|θ±|2 = λu±. The equation
Qφ± = λφ± thus gives

d
dtu± + i

(1
4 |Y | −

2
3 i divX −X.A− λ

)
u± = 0.

Since γ is a closed integral curve with period τ it follows that we must have
τ∫

0

(1
4 |Y | −

2
3 i divX −X.A− λ

)
(γ(t)) dt ∈ 2πZ.

The result now follows from (3.7), (3.8) and (3.9).
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7. REGULARITY OF ZERO MODES

Suppose A is a smooth magnetic potential. Then DA is essentially self-adjoint on C∞0
(see [17, Theorem 4.3] for example); in particular, for any ψ ∈ Dom(DA) we can find
{ψn}n∈N ⊂ C∞0 with ψn → ψ and DAψn → DAψ in H. However DA is also an elliptic
operator; if DAψ ∈ C∞ for some ψ ∈ Dom(DA) (which is clearly the case for zero
modes) elliptic regularity then gives ψ ∈ C∞. In this case it is clear from the proof of
[17, Theorem 4.3] that we may further assume our approximating sequence satisfies
ψn → ψ pointwise on R3.

Now suppose X is a conformal Killing field satisfying (1.2). If ψ is a potential zero
mode we need a more particular approximating sequence that has ψn ∈ C∞X,0 and
DAψn → DAψ in HX . We begin by considering these conditions separately.

Choose a non-increasing ξ ∈ C∞(R) with ξ(t) = 1 for t < 0 and ξ(t) = 0 for t > 1.
For any ρ > 1 define ξρ ∈ C∞(R) by

ξρ(t) =
{

1 if t ≤ 1,
ξ(log log t− log log ρ) if t > 1.

Also define ηρ ∈ C∞0 by ηρ(x) = ξρ(|x|).

Lemma 7.1. Suppose ψ ∈ H∩C∞ and set ψρ = ηρψ ∈ C∞0 for ρ > 1. If DAψ ∈ HX
then DAψρ → DAψ in HX as ρ→∞.

Proof. Note that supp(∇ηρ) = {x : ρ ≤ |x| ≤ ρe} while, for |x| > 1,

∇ηρ(x) = x
|x|2 log|x| ξ

′(log log|x| − log log ρ).

As ω1/2(x) ≤ C(1 + |x|) for some constant C we then get

‖ω1/2∇ηρ‖L∞ ≤ 2C‖ξ′‖L∞ sup
ρ≤|x|≤ρe

1
log|x| = 2C‖ξ′‖L∞

log ρ −→ 0 (7.1)

as ρ→∞. Now |σ.∇ηρψ| = |∇ηρ| |ψ| so
∫
|DA(ψρ − ψ)(x)|2ω(x) d3x

≤ 2
∫
|∇ηρ(x)|2|ψ(x)|2ω(x) d3x + 2

∫
|ηρ(x)− 1|2|DAψ(x)|2ω(x) d3x.

Both terms in the final line tend to 0 as ρ→∞, the first by (7.1) and the second by
dominated convergence (note that ηρ(x)→ 1 for all x).

For any ε ∈ (0, 1) define ζε ∈ C∞ by ζε(x) = ξ1/ε(ω−1(x)). Thus ζε(x) → 1 as
ε→ 0 for any x ∈ ΩX . Also let H1 denote the first order Sobolev space (consisting of
functions with ψ,∇ψ ∈ L2).
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Lemma 7.2. If X is an admissible field and ψ ∈ C∞0 then ζεψ → ψ in H1 as ε→ 0.

Proof. We have

∇ζε = (∇ω−1) ξ′1/ε(ω−1) = ∇ω
ω log ω ξ

′(log log ω − log log ε).

In particular, supp(∇ζε) ⊆ ∆ε := {x : εe ≤ |ω(x)| ≤ ε}, while

|∇ζε|2 ≤ |∇ω|2 `(ω) ‖ξ′‖L∞

where `(r) = 1/(r2 log2 r) for r > 0 and |∇ω|2 is a smooth function (see (3.2)). For any
admissible field we have `(ω) ∈ L1

loc, while |∆ε ∩K| → 0 as ε→ 0 for any compact set
K (note that {x : ω(x) = 0} is either empty or a 1-dimensional sub-manifold of R3).
Now
∫
|∇(ζεψ − ψ)(x)|2 d3x ≤ 2

∫
|∇ζε(x)|2|ψ(x)|2 d3x + 2

∫
|ζε(x)− 1|2|∇ψ(x)|2 d3x.

On the right hand side both terms tend to 0 as ε→ 0, the first from the discussion
above and the second by dominated convergence.

Remark 7.3. The function ηρ provides a cut-off for large x, while ζε provides a cut-off
near {x : ω(x) = 0}. In particular, Lemma 7.2 shows that the set {x : ω(x) = 0} has
(harmonic) capacity 0, or is (−1, 2)-null; in R3 1-dimensional submanifolds are in some
sense borderline in this respect (see [13] for further discussion).

Proposition 7.4. Suppose ψ ∈ H∩C∞. If DAψ ∈ HX we can find {ψn}n∈N ⊂ C∞X,0
so that ψn → ψ in H, ψn(x)→ ψ(x) for x ∈ ΩX , and DAψn → DAψ in HX .
Proof. Set ψ1 ≡ 0 and ψn = ηnζεnψ ∈ C∞X,0 for n > 1, where εn → 0 but otherwise
remains to be chosen. Then ψn → ψ in H while ψn(x)→ ψ(x) for x ∈ ΩX . Now set

Mn = sup
{

4(1 + |A(x)|2)ω(x) : x ∈ supp(ηn)
}

and δn = M−1
n 2−n,

so δn > 0 and δn → 0. Note that ηnψ ∈ C∞0 ; we can then use Lemma 7.2 to find εn
so that ‖φn‖2H1 ≤ δn, where φn = ζεnηnψ − ηnψ = ψn − ηnψ. Clearly we may further
assume εn → 0. Now |σ.∇φn|2 ≤ 3|∇φn|2 and |σ.Aφn| = |A| |φn| so

|DAφn|2 ≤ 4
3 |σ.∇φn|

2 + 4|σ.Aφn|2 ≤ 4(1 + |A|2)(|∇φn|2 + |φn|2).

Hence

‖DA(ψn − ηnψ)‖2X ≤
∫

4(1 + |A(x)|2)
(
|∇φn(x)|+ |φn(x)|2

)
ω(x) d3x

≤Mn‖φn‖2H1 ≤ 2−n,

so DA(ψn − ηnψ)→ 0 in HX . However DA(ηnψ)→ DAψ in HX by Lemma 7.1. This
completes the result.
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8. PROOF OF THE MAIN RESULT

Suppose X is an admissible field and ψ ∈ C∞. Then ω−1ψ, Q(ω−1ψ) ∈ C∞X while

Q(ω−1ψ) = ω−1
(
−i∇Xψ + 1

4σ.Y ψ −
1
3 i divX ψ −X.Aψ

)

(recall (2.2)); note that, the term in the parentheses on the right hand side is in C∞.
Since ω−1 ∈ L1

loc for any admissible field, we then get

ω−1ψ, ω|Q(ω−1ψ)|2 ∈ L1
loc. (8.1)

Proof of Theorem 1.1. Suppose ψ ∈ H is a zero mode of DA. Elliptic regularity gives
ψ ∈ C∞. Let {ψn}n∈N ⊂ C∞X,0 be as given by Proposition 7.4. Set φ = ω−1ψ ∈ C∞X
and, for each n ∈ N, φn = ω−1ψn ∈ C∞X,0. We immediately have φn(x) → φ(x) and
Qφn(x)→ Qφ(x) for x ∈ ΩX , while DAωφn = DAψn → 0 in HX . From (8.1) we also
have ω|Qφn|2, ω|Qφ|2 ∈ L1

loc. However Proposition 5.3 gives
∫
|Qφn(x)|2ω(x) d3x = ‖Qφn‖2X ≤ ‖DAωφn‖2X =

∫
|DAψn(x)|2ω(x) d3x

for all n ∈ N. Taking n→∞ and applying Fatou’s lemma it follows that
∫
|Qφ(x)|2ω(x) d3x = 0.

Hence ω1/2Qφ = 0 almost everywhere. Since Qφ ∈ C∞X we then get Qφ = 0 on ΩX .
If X is non-constant the closed integral curves of X are dense (in R3). Since φ is
non-trivial we then obtain a contradiction with Proposition 6.1.

To deal with the remaining case we may assume X = e3. Then ΩX = R3 while the
equation Qφ = 0 becomes

(−i∇3 −A3)φ = 0 ⇐⇒ ∇3(e−ifφ) = 0,

where f ∈ C∞ is any real-valued function with ∇3f = A3. It is straightforward to see
that this final equation cannot have a non-trivial solution φ ∈ H ∩ C∞.
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