PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Material Flow Analysis of Waste Electrical and Electronic Equipment in Ukraine

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The composition of widespread electronic devices (mobile phone, computer mouse, keyboard, web-camera, monitor) was studied by manual dismantling. The material flow analysis was conducted for e-waste components. For the case study of Ukraine, five devices under investigation contain over 4 thousand tons / year resources. Most of them (first of all, plastic and metal) can be easily recovered. The content of chemical elements in the components of the electronic devices was determined by X-ray fluorescence analysis. Taking into account the mass of electronic waste generated in Ukraine, the resource potential of metals was estimated. Most of metals are concentrated in mobile phones and monitors (about 2000 tons/year). Apart from common metals, silver, molybdenum, vanadium, rubidium, zirconium, antimony, yttrium, rhodium, bismuth, and gallium were also found.
Rocznik
Strony
198--207
Opis fizyczny
Bibliogr. 35 poz., rys., tab.
Twórcy
  • Department of Ecology and Environmental Safety, Vinnytsia National Technical University, Khmelnytske shose 95, Vinnytsia, 21021, Ukraine
  • Department of Ecology and Environmental Safety, Vinnytsia National Technical University, Khmelnytske shose 95, Vinnytsia, 21021, Ukraine
  • Department of Ecological Safety and Nature Protection Activity, Viacheslav Chornovil Institute of Sustainable Development, Lviv Polytechnic National University, Lviv, 12 Bandera St, 79013, Ukraine
autor
  • Department of Ecology, Faculty of Humanities and Natural Sciences, University of Presov, 17, Novembra 1 St., Prešov, 081 16, Slovakia
Bibliografia
  • 1. OECD Industrial and hazardous waste, in Environment at a Glance 2013: OECD Indicators, OECD Publishing, 2013, Paris. DOI: 10.1787/9789264185715-16-en
  • 2. Ishchenko V., Pohrebennyk V., Kochan R., Mitryasova O., Zawislak S. 2019. Assessment of hazardous household waste generation in eastern europe. 19th International Multidisciplinary Scientific GeoConference SGEM 2019, 6.1, 559–566.
  • 3. Bejanidze I., Pohrebennyk V., Kharebava T., Koncelidze Z., Jun S. 2019. Development of waste-free, eco-pure combined technology for fruit processing. International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM, Albena, Bulgaria, 19(5.1), 173–180.
  • 4. Ishchenko V., Pohrebennyk V., Kochanek A., Przydatek G. 2017. Comparative environmental analysis of waste processing methods in paper recycling. International Multidisciplinary Scientific GeoConference Surveying Geology and Mining EcologyManagement, SGEM, Albena, Bulgaria, 17(51), 227–234.
  • 5. Pohrebennyk V., Cygnar M., Mitryasova O., Politylo R., Shybanova A. 2016. Efficiency of sewage treatment of company “Enzyme”. International Multidisciplinary Scientific GeoConference Surveying Geology and Mining EcologyManagement, SGEM, Albena, Bulgaria, 2, 295–302.
  • 6. Ishchenko V., Pohrebennyk V., Kozak Y., Kochanek A., Politylo R. 2016. Assessment of batteries influence on living organisms by bioindication method. 16th International Multidisciplinary Scientific GeoConference SGEM. Albena, Bulgaria, 30 June – 6 July 2016, 2, 85–92.
  • 7. Mitryasova O., Pohrebennyk V. 2017. Integrated environmental assessment of the surface waters pollution: Regional aspect. International Multidisciplinary Scientific GeoConference SGEM, Vienna, Austria, 33, 235–242.
  • 8. Zaporozhets A., Babak V., Isaienko V., Babikova K. 2020. Analysis of the Air Pollution Monitoring System in Ukraine. Studies in Systems, Decision and Control, 298, 85–110. https://www.springer.com/gp/book/9783030485825
  • 9. Mitryasova O., Pohrebennyk V. 2020. Hydrochemical Indicators of Water System Analysis as Factors of the Environmental Quality State. Sustainable Production: Novel Trends in Energy, Environment and Material Systems. Studies in Systems, Decision and Control In: Królczyk G., Wzorek M., Król A., Kochan O., Su J., Kacprzyk J. (Eds). Springer, Cham, 198, 91−104.
  • 10. Karpinski M., Pohrebennyk V., Bernatska N., Ganczarchyk J., Shevchenko O. 2018. Simulation of Artificial Neural Networks for Assessing the Ecological State of Surface Water, 18th International Multidisciplinary Scientific GeoConference SGEM, Albena, Bulgaria, 30 Jun – 09 Jul 2018, 693–700.
  • 11. Mitryasova O., Pohrebennyk V., Kochanek A., Stepanova O. 2017. Environmental Footprint Enterprise as Indicator of Balance it’s Activity. 17th International Multidisciplinary Scientific Geoconference SGEM 2017, Albena, Bulgaria, 51(17), 371–378.
  • 12. Bobylev V.P., Matukhno Y.V., Turishchev V.V., Belokon K.V. 2014. Methodical approach for selection of design parameters of electrodialisys diaphragmless apparatus for regeneration of electrolyte containing solution. Metallurgical and Mining Industry, 5(2), 77–80.
  • 13. Przydatek G., Kanownik W. 2021. Physicochemical indicators of the influence of a lined municipal landfill on groundwater quality: a case study from Poland, Environmental Earth Sciences, 80(456), 1–14.
  • 14. Bigum M., Petersen C., Christensen T.H., Scheutz C. 2013. WEEE and portable batteries in residual household waste: Quantification and characterisation of misplaced waste. Waste Management, 33(11), 2372–2380.
  • 15. Cesaro A., Marra A., Kuchta K., Belgıorno V., Van Hullebusch E.D. 2018. WEEE management in a circular economy perspective: An overview. Global NEST Journal, 20, 743–750.
  • 16. Chancerel P., Meskers C.E., Hagelüken C., Rotter V.S. 2009. Assessment of precious metal flows during preprocessing of waste electrical and electronic equipment. Journal of Industrial Ecology, 13(5), 791–810.
  • 17. Charles R.G., Douglas P., Hallin I.L., Matthews I., Liversage G. 2017. An investigation of trends in precious metal and copper content of RAM modules in WEEE: Implications for long term recycling potential. Waste management, 60, 505–520.
  • 18. Cucchiella F., D’Adamo I., Koh S.L., Rosa P. 2015. Recycling of WEEEs: An economic assessment of present and future e-waste streams. Renewable and sustainable energy reviews, 51, 263–272.
  • 19. Dimitrakakis E., Janz A., Bilitewski B., Gidarakos E. 2009a. Small WEEE: determining recyclables and hazardous substances in plastics. Journal of Hazardous Materials, 2009, 1(2–3), 913–919.
  • 20. Dimitrakakis E., Janz A., Bilitewski B., Gidarakos E. 2009b. Determination of heavy metals and halogens in plastics from electric and electronic waste. Waste Management, 29(10), 2700–2706.
  • 21. Duan H., Hu J., Tan Q., Liu L., Wang Y., Li J. 2016. Systematic characterization of generation and management of e-waste in China. Environmental Science and Pollution Research, 23(2), 1929–1943.
  • 22. Ernst T., Popp R., van Eldik R. 2000. Quantification of heavy metals for the recycling of waste plastics from electrotechnical applications. Talanta, 53(2), 347–357.
  • 23. Ghosh M., Basu S., Sur D., Banerjee P.S. 2020. Metallic Materials from E-Waste. Reference Module in Materials Science and Materials Engineering. Encyclopedia of Renewable and Sustainable Materials, 1, 438–455.
  • 24. Goodship V., Stevels A., Huisman J. 2019. Waste electrical and electronic equipment (WEEE) handbook. Woodhead Publishing, Cambridge.
  • 25. Holgersson S., Steenari B.M., Björkman M., Cullbrand K. 2018. Analysis of the metal content of small-size Waste Electric and Electronic Equipment (WEEE) printed circuit boards, Part 1: Internet routers, mobile phones and smartphones. Resources, conservation and recycling, 133, 300–308.
  • 26. Hong H.S., Choi A.R. 2018. Quantitative characterization of recyclable resources dismantled from waste liquid crystal display products. Journal of Material Cycles and Waste Management, 20(4), 2054–2061.
  • 27. Ishchenko V. 2019. Heavy metals in municipal waste: the content and leaching ability by waste fraction. Journal of Environmental Science and Health, Part A, 54(14), 1448–1456.
  • 28. Lincoln J.D., Ogunseitan O.A., Shapiro A.A., Saphores J.D.M. 2007. Leaching assessments of hazardous materials in cellular telephones. Environmental Science & Technology, 41(7), 2572–2578.
  • 29. Morf L.S., Tremp J., Gloor R., Schuppisser F., Stengele M., Taverna R. 2007. Metals, non-metals and PCB in electrical and electronic waste–Actual levels in Switzerland. Waste Management, 27(10), 1306–1316.
  • 30. Musson S.E., Vann K.N., Jang Y.C., Mutha S., Jordan A., Pearson B., Townsend T.G. 2006. RCRA toxicity characterization of discarded electronic devices. Environmental science & technology, 40(8), 2721–2726.
  • 31. Nnorom I.C., Osibanjo O. 2009. Toxicity characterization of waste mobile phone plastics. Journal of hazardous materials, 161(1), 183–188.
  • 32. Oguchi M., Sakanakura H., Terazono A. 2013. Toxic metals in WEEE: Characterization and substance flow analysis in waste treatment processes. Science of the total environment, 463, 1124–1132.
  • 33. Pohrebennyk V., Korostynska O., Mason A., Cygnar M. 2016. Operative control parameters of water environment. In 2016 9th International Conference on Developments in eSystems Engineering (DeSE), 335–340.
  • 34. Salhofer S., Tesar M. 2011. Assessment of removal of components containing hazardous substances from small WEEE in Austria. Journal of hazardous materials, 186(2–3), 1481–1488.
  • 35. UN Comtrade Database. https://comtrade.un.org/data/
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e0dbcd86-4de6-4965-9858-c276b01bc444
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.