Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This article investigates the influence of sewage sludge treatment processes and stabilization methods on metal-binding capacity and susceptibility to metal remobilization from sewage sludge. The materials (stabilized sewage sludge) were collected from two mechanical-biological sewage treatment plants located in an industrial area in southern Poland (Silesian Province): 1) one with nutrient removal (nitrogen and phosphorus) and anaerobic sludge digestion (WWTPIII), and 2) a facility without nutrient removal and with aerobic sludge stabilization (WWTP-II). Concentrations of PTEs in sewage sludge samples were measured using the inductively coupled plasma optical emission spectrometry (ICP-OES). Sewage sludge from WWTP-III showed a significantly higher sorption capacity for Cu ions (20–50%) and Ni ions (50% to 2.5-fold) as compared to sewage sludge from WWTP-II. However, sewage sludge from WWTP-II exhibited a higher sorption capacity for Cd ions. The studied potentially toxic elements (PTEs), irrespective of anion type, formed unstable bonds with sewage sludge, which may lead to their desorption into the environment. The high mobility of Cd, Cu, Ni and Zn ions in chloride and sulphate system, as well as the low susceptibility to Cr ion release, should be considered in various applications of the tested sewage sludge.
Wydawca
Rocznik
Tom
Strony
117--135
Opis fizyczny
Bibliogr. 40 poz., tab., rys.
Twórcy
autor
- The Institute of Environmental Engineering of the Polish Academy of Sciences, Zabrze, Poland
Bibliografia
- 1. Abdel-Aziz, M.H., Bassyouni, M., Soliman, M.F., Gutub, S.A. & Magram, S.F., (2017). Removal of heavy metals from wastewater using thermally treated sewage sludge adsorbent without chemical activation. Journal of Materials and Environmental Sciences, 8(5), 1737–1747.
- 2. Ait Ahsainea H., Zbair M. & El Haouti R., (2017). Mesoporous treated sewage sludge as outstanding low-cost adsorbent for cadmium removal. Desalination and Water Treatment, 85, 330–338.
- 3. Bezak-Mazur, E., Piec, A., & Jamrożek, A., (2010). Sorption Capacity of Sewage Sludge for Ions of Selected Metals. Ecological Chemistry and Engineering. A, 17, 1415–1420.
- 4. Council Directive. (1991). Council Directive of 21 May 1991 concerning urban waste water treatment (91/271/EEC). (OJ L 135 30.5.1991, p. 40).
- 5. Delibacak, S., Voronina, L. & Morachevskaya, E. (2020). Use of sewage sludge in agricultural soils: Useful or harmful. Eurasian Journal of Soil Science (EJSS), 9. https://doi.org/10.18393/ejss.687052
- 6. El-Hefnawy, M.E., Selim, E.M, Assaad, F.F. & Ismail, A.I., (2014). The effect of chloride and sulfate ions on the adsorption of Cd2+ on clay and sandy loam Egyptian soils. Scientific World Journal, 806252. https://doi.org/10.1155/2014/806252
- 7. Elouear, Z., Bouzid, J., & Boujelben, N., (2009). Removal of nickel and cadmium from aqueous solutions by sewage sludge ash: Study in single and binary systems. Environmental Technology, 30(6), 561–570. https://doi.org/10.1080/09593330902824940
- 8. EurEau, (2021). Europe’s Water in Figures: An Overview of the European Drinking water and Waste Water Sectors. Brussels, Belgium, https://www.eureau.org/resources/publications/eureau-publications/5824-europe-s-water-in-figures-2021/file. [17.10.2024]
- 9. Faisal, A.A.H., & Abd Ali, Z.T., (2016). Using sewage sludge as a permeable reactive barrier for remediation of groundwater contaminated with lead and phenol. Separation Science and Technology, 52(4), 732–742. https://doi.org/10.1080/01496395.2016.1251463
- 10. Fathi, A. & Ali, A. (2022). Recycling of Sewage Sludge to Prepare an Effective Adsorbent to Treat Selected Heavy Metals- Contaminated Water. Egyptian Journal of Chemistry, 65(9), 379–387. doi: 10.21608/ejchem.2022.113161.5140
- 11. Gawdzik, J. & Gawdzik, B., (2012). Mobility of Heavy Metals in Municipal Sewage Sludge from Different Throughput Sewage Treatment Plants. Polish Journal of Environmental Studies, 21(6), 1603–1611.
- 12. Groundwater Directive (GWD) 2006/118/EC: Directive 2006/118/EC of the European Parliament and of the Council of 12 December 2006 on the protection of groundwater against pollution and deterioration.
- 13. Hall, K.R., Eagleton, L.C., Acrivos, A. & Vermeulen, T., (1966). Pore- and solid-diffusion kinetics in fixed-bed adsorption under constant pattern conditions. Industrial and Engineering Chemistry Fundamentals, 5(2), 212–223.
- 14. Hiemstra, T. & Van Riemsdijk, W.H., (2006). On the relationship between charge distribution, surface hydration, and the structure of the interface of metal hydroxides. Journal of Colloid and Interface Science, 301(1), 1–18.
- 15. Jasińska, A., (2018). The Importance of Heavy Metal Speciation from the Standpoint of the Use of Sewage Sludge in Nature. Engineering and Protection of Environment, 21(3), 239–250. https://doi.org/10.17512/ios.2018.3.3
- 16. Karwowska, B. & Dąbrowska, L., (2017). Bioavailability of heavy metals in the municipal sewage sludge. Ecological Chemistry and Engineering A, 24(1), 75–86, DOI:10.2428/ecea.2017.24(1)6
- 17. Kersten, M. & Förstner, U., (1986). Chemical fractionation of heavy metals in anoxic estuarine and coastal sediments. Water Science and Technology, 18, 121–130.
- 18. Khadahar S., Sdiri A., Chekirben A., Azouzi R., Charef A., (2020). Integration of sequential extraction, chemical analysis and statistical tools for the availability risk assessment of heavy metals in sludge amended soils. Environmental Pollution, 263, 114543. https://doi.org/10.1016/j.envpol.2020.114543
- 19. Kyzioł, J., (2002). Effect of physical properties and cation exchange capacity on sorption of heavy metals onto peats. Polish Journal of Environmental Studies, 11(6), 713–718.
- 20. Langmuir, I., (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of The American Chemical Society, 40, 1361–1403.
- 21. Latosińska J., Kowalik, R. & Gawdzik, J., (2021). Risk Assessment of Soil Contamination with Heavy Metals from Municipal Sewage Sludge. Applied Sciences, 11(2), 548. https://doi.org/10.3390/app11020548
- 22. McBride, M.B., (2003). Toxic elements in sewage sludge-amended soils: Has promotion of beneficial use discounted the risks? Advances in Environmental Research, 8(1), 5–19. https://doi.org/10.1016/S1093-0191(02)00141-7
- 23. Miksch, K. & Sikora J., (2012). Biotechnologia ścieków. Warsaw: WN PWN (in Polish).
- 24. Official Journal of the European Communities. L 181/6. Council Directive 86/278/EEC of 12 June 1986 on the Protection of the Environment, and in Particular of the Soil, When Sewage Sludge Is Used in Agriculture, https://eur-lex.europa.eu/legal-content/EN/ TXT/?uri=celex%3A31986L0278 [30.10.2024]
- 25. PN-EN 12879:2004. Polish norm. Sewage sludge. Determination of the loss on ignition of sludge dry matter Weight method. (in Polish)
- 26. PN-EN 12880:2004. Polish norm. Sewage sludge. Determination of dry matter and water content. Weight method. (in Polish)
- 27. PN-EN 12176:2004. Polish norm. Sewage sludge. Characteristics of sewage sludge—determination of pH value. (in Polish)
- 28. Regulation of the Minister of Environment on the Municipal Sewage Sludge (Polish Journal of Laws/Dz.U. 2023, Item 23).
- 29. Regulation of the Minister of the Environment of 1 September 2016 on the conduct of the assessment of contamination of the surface of the earth (Polish Journal of Laws/Dz.U. 2016, item 1395).
- 30. Schwertmann, U., (1964). Differenzierung der Eisenoxide des Bodens durch Extraction mit Ammoniumoxalat-Lösung. Zaitschrift für Pflanzenernährung Düngung Bodenkunde, 105, 194–202.
- 31. Shrivastava, S.K. & Banerjee, D.K., (2004). Speciation of Metals in Sewage Sludge and Sludge-amended Soils. Water, Air, & Soil Pollution, 152, 219–232. https://doi.org/10.1023/B: WATE.0000015364.19974.36
- 32. Siebielec, G. & Stuczynski, T., (2008). Trace metals in municipal biosolids produced in Poland. Proceedings of ECOpole, 2(2), 479–484.
- 33. Sparks, L.D., (1995). Ion exchange processes. Environmental soil chemistry. Academic press London.
- 34. Statistics Poland, Agriculture and Environment Department, https://stat.gov.pl/files/gfx/portalinformacyjny/pl/defaultaktualnosci/5484/1/24/1/ochrona_srodowiska_2023.pdf [23.10.2024]
- 35. Tessier, A., Campbell, P.G.C. & Bisson, M., (1979). Sequential Extraction Procedure for the Speciation of Particular Trace Elements. Analytical Chemistry, 51, 844–851. https://doi.org/10.1021/ac50043a017
- 36. Twardowska, I., Kyzioł, J., Avnimelech, Y., Stefaniak, S. & Janta-Koszuta, K., (2006). Using abundant waste and natural materials for soil and groundwater protection against contamination with heavy metals: Prospects and areas of application. In: I. Twardowska, H.E. Allen & M.M. Haggblom (eds.), Soil and water pollution: monitoring, protection and remediation, pp. 231–248.
- 37. Tytła, M., (2019). Assessment of Heavy Metal Pollution and Potential Ecological Risk in Sewage Sludge from Municipal Wastewater Treatment Plant Located in the Most Industrialized Region in Poland – Case Study. International Journal of Environmental Research and Public Health, 16(13), 2430. https://doi.org/10.3390/ijerph16132430
- 38. Water Framework Directive (WFD) 2000/60/EC: Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy.
- 39. Zanona, V.R.C.M., Barquilha, C.E.R. & Braga, M.C.B., (2023). Removal of recalcitrant organic matter of landfill leachate by adsorption onto biochar from sewage sludge: A quali-quantitative analysis. Journal of Environmental Management, 344, 118387. https://doi.org/10.1016/ j.jenvman.2023.118387
- 40. Zhang, H., Yang, B., Zhang, G., Zhang, X., (2016). Sewage sludge as barrier material for heavy metals in waste landfill. Archives of Environmental Protection, 42(2), 52–58. DOI: 10.1515/aep-2016-0020
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e0db4c78-bbda-4e67-aec9-0d1803343636
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.