Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The aim of the study was to analyze changes in tissue oxygen distribution resulting from temperature changes by the use of the Krogh cylinder model with Michaelis-Menten kinetics. A Hill model was also used to describe the oxyhemoglobin dissociation curve. In particular, variable values of parameters of dissociation curve and blood velocity in capillary were considered. Mathematical description was based on two separate equations for radial and axial directions. An additional task related to determination of the temperature, tissue thermal damage and perfusion was also solved. At the stage of numerical realization, the finite difference method was used.
Rocznik
Tom
Strony
17--28
Opis fizyczny
Bibliogr. 21 poz., rys., tab.
Twórcy
autor
- Department of Computational Mechanics and Engineering Silesian University of Technology Gliwice, Poland
Bibliografia
- [1] Goldman, D. (2008). Theoretical models of microvascular oxygen transport to tissue. Microcirculation, 15, 795-811.
- [2] Popel, A.S. (1989). Theory of oxygen transport to tissue. Critical Reviews in Biomedical Engineering, 17, 257-321.
- [3] Krogh, A. (1919). The number and distribution of capillaries in muscles with calculations of the oxygen pressure head necessary for supplying the tissue. Journal of Physiology, 52, 409-415.
- [4] McGuire, B.J., & Secomb, T.W. (2001). A theoretical model for oxygen transport in skeletal muscle under conditions of high oxygen demand. Journal of Applied Physiology, 91, 2255-2265.
- [5] McGuire, B.J., & Secomb, T.W. (2003). Estimation of capillary density in human skeletal muscle based on maximal oxygen consumption rates. American Journal of Physiology-Heart and Circulatory Physiology, 285, H2382-H2391.
- [6] He, Y., Shirazaki, M., Liu, H., Himeno, R., & Sun, Z. (2006). A numerical coupling model to analyze the blood flow, temperature, and oxygen transport in human breast tumor under laser irradiation. Computers in Biology and Medicine, 36, 1289-1378.
- [7] Kang-Hsin Wang, K., Finlay, J.C., Busch, T.M., Hahn, S.M., & Zhu, T.C. (2010). Explicit dosimetry for photodynamic therapy: macroscopic singlet oxygen modeling. Journal of Biophotonics, 3, 5-6.
- [8] Zhu, T.C., Liu, B., & Penjweini, R. (2015). Study of tissue oxygen supply rate in a macroscopic photodynamic therapy singlet oxygen model. Journal of Biomedical Optics, 20, 038001.
- [9] Secomb, T.W., Alberding, J.P., Hsu, R., Dewhirst, M.W., & Pries A.R. (2013). Angiogenesis: an adaptive dynamic biological pattering problem. PLoS Computational Biology, 9, e1002983.
- [10] Whiteley, J.P., Gavaghan, D.J., & Hahn, C.E.W. (2002). Mathematical modelling of oxygen transport to tissue. Journal of Mathematical Biology, 44, 503-522.
- [11] Castaing, M., & Sinet, M. (1980). Temperature and oxygenation of human blood constant total CO2 content. Pflugers Archiv, European Journal of Physiology, 386, 135-140.
- [12] Hlastala, M.P., Woodson, R.D., & Wranne, B. (1977). Influence of temperature on hemoglobinligand interaction in whole blood. Journal of Applied Physiology, 43, 545-550.
- [13] Jasiński, M. (2011). Numerical modeling of tissue heating with application of sensitivity methods. Mechanika 2011: Proceedings of the 16th International Conference, 137-142.
- [14] Jasiński, M. (2018). Modelling of thermal damage process in soft tissue subjected to laser irradiation. Journal of Applied Mathematics and Computational Mechanics, 17, 29-41.
- [15] Korczak, A., & Jasiński, M. (2019). Modelling of biological tissue damage process with application of interval arithmetic. Journal of Theoretical and Applied Mechanics, 57, 249-261.
- [16] Paruch, M. (2018). Identification of the degree of tumor destruction on the basis of the Arrhenius integral using the evolutionary algorithm. International Journal of Thermal Sciences, 130, 507-517.
- [17] Paruch, M. (2020). Mathematical modeling of breast tumor destruction using fast heating during radiofrequency ablation. Materials, 13, 136.
- [18] Mochnacki, B., & Ciesielski, M. (2016). Sensitivity of transient temperature field in domain of forearm insulated by protective clothing with respect to perturbations of external boundary heat flux. Bulletin of the Polish Academy of Sciences - Technical Sciences, 64, 591-598.
- [19] Mochnacki. B., & Piasecka-Belkhayat. A. (2013). Numerical modeling of skin tissue heating using the interval finite difference method. Molecular & Cellular Biomechanics, 10, 233-244.
- [20] Majchrzak, E., & Mochnacki, B. (2016). Dual-phase lag equation. Stability conditions of a numerical algorithm based on the explicit scheme of the finite difference method. Journalof Applied Mathematics and Computational Mechanics, 15, 89-96.
- [21] Fletcher, J.E. (1980). On facilitated oxygen diffusion in muscle tissues. Biophysical Journal, 29, 437-458.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e0d2d540-b1f1-43c7-8319-e29b2cbba190