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Abstract 

This article presents the process of designing a fuzzy logic controller (FLC) to be applied in the control system for 
the tracking movement of an omnidirectional Mecanum-wheeled platform, where the tracking movement is defined as 
the execution of a specific movement of the omnidirectional Mecanum-wheeled platform along a preset path. 
The conventional PID controller, which is a popular choice for control systems, was replaced with a control 
algorithm featuring fuzzy logic elements. The findings from numerical testing of the control system with the applied 
FLC were compared with the results of numerical testing using a variant of a conventional PID controller. 
The comparison led to a feasibility study of the FLC for the kinematic control of the omnidirectional Mecanum-
wheeled platform.  

The article compares the results of applying an FLC and a variant of a conventional PID controller for the 
tracking control of an omnidirectional-wheeled platform with mecanum wheels. It was assumed in this work that 
kinematic equations would be sufficient in this case to plan the trajectory (path) of a characteristic point for the 
omnidirectional-wheeled platform. 
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1. Introduction

The automatic control systems, which are often applied in engineering still, feature traditional 
systems based on PID controllers or their variants, namely P, PI and PD controllers. These feature 
algorithms, which can provide satisfactory results in most conventional control applications. 
However, the needs of applications characterized by complex mathematical models may prove 
beyond the capability of conventional controllers to provide the required quality of control, forcing 
their operators to continuously find and implement sufficient set point parameters [7-9]. 

An approach to motion control based on fuzzy set theory, however, facilitates the formulation 
of control algorithms based on rules of logic, the inputs of which involve the operator's (an expert, 
if you will) knowledge, describing complex systems with variables formulated in an intuitive 
and qualitative (verbal) manner [7-9]. 

The article compares the results of applying an FLC and a variant of a conventional PID 
controller for the tracking control of an omnidirectional-wheeled platform with mecanum wheels. 
It was assumed in this work that kinematic equations would be sufficient in this case to plan 
the trajectory (path) of a characteristic point for the omnidirectional-wheeled platform. 

2. Kinematics of the omnidirectional mecanum-wheeled platform

The platform comprised a chassis frame, four mecanum wheels and four permanent magnet DC 
motors (Fig. 1). The mecanum wheels, which featured identically oriented rollers, were installed at 
the locations shown in Fig. 1. 
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Fig. 1. Numerical model of the omnidirectional mecanum-wheeled platform 

 
The kinematics of the platform, positioned within an immobile coordinate system, was 

described with the following equations: 

 −ẋA(cosβ + sinβ) + ẏA(cosβ − sinβ) + β̇�sx + sy� + Rtφ̇1 = 0, (1) 
 ẋA(cosβ − sinβ) + ẏA(cosβ + sinβ) + β̇�sx + sy� − Rtφ̇2 = 0, (2) 
 ẋA(cosβ − sinβ) + ẏA(cosβ + sinβ) − β̇�sx + sy� − Rtφ̇3 = 0, (3) 
 −ẋA(cosβ + sinβ) + ẏA(cosβ − sinβ) − β̇�sx + sy� + Rtφ̇4 = 0, (4) 

with: ẋA, ẏA – projections for the velocity of a specific characteristic point of the omnidirectional 
mecanum-wheeled platform, i.e. point A on the x-y axis of the coordinate system, β̇,β  – angular 
parameters of the chassis frame, φ̇i (i = 1, 2, 3, 4) – angular velocities of Mecanum wheel i, 
Rt – radius of the mecanum wheels [2, 3]. 

To solve the simple kinematic problem, the platform was described with coordinate system 
x1y1z1 fixed to the chassis of the platform. One of used methods is to apply the Moore-Penrose 
theorem of inverse square matrices to the Jacobian point J present in the kinematic relations 
discussed here [2, 10]. 

Ultimately, the solution to the simple kinematic problem was presented as the following 
relationships: 
 vAx1 = �Rt

4
� [φ̇1 + φ̇2 + φ̇3 + φ̇4], (5) 

 vAy1 = �Rt
4
� [−φ̇1 + φ̇2 + φ̇3 − φ̇4], (6) 

 β̇ = � Rt
4�sx+sy�

� [−φ̇1 + φ̇2 − φ̇3 + φ̇4]. (7) 

Equations (5-7) describe the solution to the simple kinematic problem, which served here as 
a mathematical model for the kinematic system [2].  
 
3. Permanent-magnet DC motor 
 

The four actuators for the omnidirectional mecanum-wheeled platform were permanent-magnet 
DC motors. Given that the angular velocity of the DC motor’s rotor (φ̇r) was an output quantity 
and the supply voltage (Uz) was an input value, the transmittance of the DC motor could be 
expressed as a second-order element. 

 G(s) = Ωr(s)
Uz(s)

= K
TeTms2+Tms+1

 , (8) 
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with: Te – electric time constant, Tm – mechanical time constant, K – velocity gain factor [6]. 
The electric time constant had values much lower than the mechanical time constant for the 

same kinematic system, given the very low inductance rotors and very low resistance windings 
found in most DC motors. 

4. PID controller

To synthesize a PID controller, the following law of conventional control was assumed: 

uPID(t) = kPePID(t) + kI ∫ ePID(t)dtt
0 + kD

dePID(t)
dt

, (9) 

with: kP, kI, kD – gains of the proportional element, the integrating element and the differential 
element, respectively [5, 6]. 

The PID controller bias was described as follows: 

ePID(t) = yd(t) − y(t), (10) 

with: yd(t) – set point, y(t) – response of the system [5, 6]. 
For this example, a PI controller was used, as a characteristic variant of the PID controller. 

5. FLC

The conventional PID controller (or PI controller here) was replaced with a control algorithm 
featuring fuzzy logic (FL) elements. Fuzzy logic control is one of the main applications of fuzzy 
set theory. An FLC is characterized by a control law, which can be described with a rule-based 
knowledge base and a fuzzy control mechanism. The FLC featured the following elements: 
a fuzzification block, an inference block and a defuzzification block. In the fuzzification process, 
the data at the FLC input were fuzzified. Next, their degree of membership with a specific fuzzy 
set was determined. The inference process calculated the resultant membership function from a set 
of rules and fuzzed input data. Finally, the defuzzification process calculated the acute FLC output 
value from the resultant membership function [1, 4, 8, 11]. 

The inputs of the Mamdani PI FLC were bias e and change of bias, Δe (here: bias integral), 
the output of the FLC model was the control signal u (Fig. 2). 

Fig. 2. General diagram of the FLC model 

The FLC bias was described as follows: 

e(t) = y(t) − yd(t), (11) 

with: yd(t) – set point, y(t) – response of the system [4, 8]. 
The input and output signals were divided into three fuzzy Gaussian sets: NE (negative), 

ZE (zero) and PO (positive), as shown in Figs. 3a, 3b and 4a, respectively. The inputs and outputs 
were normalized to the interval [-1, 1]. The resulting factors ke, ki and ku were the parameters 
applied to tune the FLC at a later stage of the study.  
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a) 

 

b) 

 
Fig. 3 Trends in the fuzzy sets of memberships of the following signals: a) bias; b) change of bias 

 
a) 

 

b) 

 
Fig. 4. Trends in the fuzzy sets of control signal membership (a). Surface of the fuzzy model (b) 

 
The knowledge base of the FLC was rule-based, as shown in Tab. 1 and comprised 9 rules. 
The small number of rules and the application of the membership functions described above 

gave the surface of the fuzzy model (Fig. 4b) a smooth and transparent spatial form. 
 

Tab. 1. Rule-based knowledge base of the FLC 

e 
Δe 

NE ZE PO 

NE ZE NE NE 
ZE PO ZE NE 
PO PO PO ZE 

 
6. Numerical simulations 
 

A simplified diagram of the numerical simulations is shown in Fig. 5. The execution of two 
motion paths was evaluated for the characteristic point of the omnidirectional Mecanum-wheeled 
platform with a constant configuration of the chassis frame. The first motion path described 
a square with sides of length 20 m (Fig. 6a), the second motion path described a circle with 
a radius of 5 m and a geometric centre at point (0, 5) (Fig. 6b). 
 

 
Fig. 5. Diagram of the numerical simulation 

 
It was assumed that each permanent-magnet DC motor had a separate controller, which 

corresponded to an implementation of a decentralized control system for the platform. 
The square motion path was generated with linear intervals (Fig. 7a). The circular motion path 

was generated with continuous, parametric equations of a circle (Fig. 7b). 
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a) 

 

b) 

 
Fig. 6. Charts of the motion paths of the characteristic point of the omnidirectional Mecanum-wheeled platform: 

(a) square motion path; b) circular motion path 
 
a) 

 

b) 

 
Fig. 7. Trends in the preset kinematic parameters of the characteristic point of the omnidirectional Mecanum-wheeled 

platform for: a) square motion path; b) circular motion path 
 

All numerical simulations considered here were carried out in the Matlab/Simulink software, 
method ode4 and discretisation step h = 0.001. The following geometrical parameters of the system 
were assumed in the numerical simulations: sx = 0.5 m, sy = 0.75 m, δ = π/4 rad, Rt = 0.1 m. 
The parameters of the permanent-magnet DC motors are shown cumulatively in Table 2. 
 

Tab. 2. Identification of the parameters of the i-th permanent-magnet DC motor (i = 1, 2, 3, 4) 

i 
K,T 

1 2 3 4 

Ki 108.15 109.06 104.27 107.13 
Tmi 0.141 0.145 0.136 0.148 
Tei 0.001 0.001 0.001 0.001 

 
Another assumption considered was: throughout each numerical simulation, each of the 

permanent-magnet DC motors was affected by a variable interference, which was proportional 
to the angular velocity of the rotor. 

To compare the effects of operation of the FLC and the PI controller, the following quality 
index was defined: 

 Jq = ∫ e(t)2dtt0
tk

, (12) 

with: 𝑡0, 𝑡𝑘 – start and end time of the numerical simulation, e(t) – control signal bias. 
 
6.1. Numerical simulation 1 
 

Numerical simulation 1 represented the operation of the PI controller with the square motion path 
of characteristic point A. The proportional and integral element gains for the controller were chosen 
by experimental trial and error. The results for numerical simulation 1 are shown in Figs. 8-10.  

The distinctive and sudden spikes in the values shown in Figs. 8a, 8b, 9a and 10 at 5, 15, 25 and 
35 s were caused by sudden changes in the preset kinematic parameters of velocity: ẋA, ẏA. The 
quality index calculated for numerical simulation 1 from relation (12) was Jq = 9.859·104 rad2/s2. 

427



A. Typiak, Ł. Rykała 

a) b) 

Fig. 8. Angular velocity trends: a) preset angular velocities (𝜑̇1, 𝜑̇4) and actual angular velocities (𝜑̇1𝑧, 𝜑̇4𝑧) 
for wheels 1 and 4; b) preset angular velocities (𝜑̇2, 𝜑̇3) and actual angular velocities (𝜑̇2𝑧 , 𝜑̇3𝑧) for wheels 2 
and 3 in numerical simulation 1 

a) b) 

Fig. 9. Bias signal trends: e1(t), e2(t), e3(t), e4(t): a) during the numerical simulation; b) at time interval t = (10, 11) s 
of numerical simulation 1 

Fig. 10. Chart of the control signals: u1(t), u2(t), u3(t), u4(t) in numerical simulation 1 

6.2. Numerical simulation 2 

Numerical simulation 2 represented the operation of the PI FLC with the square motion path 
of characteristic point A. The following gain factors for the individual controller signals were 
assumed as resulting from the normalization: ke = 1/80, ki = 1, ku = 200. The results for numerical 
simulation 2 are shown in Figs. 11-13. 

Not unlike numerical simulation 1, the distinctive and sudden spikes in the values shown 
in Figs. 11a, 11b, 12a and 13 at 5, 15, 25 and 35 s were also caused by sudden changes in the 
preset kinematic parameters of velocity: ẋA, ẏA. The quality factor Jq in this numerical simulation 
was Jq = 1.981·104 rad2/s2. 

6.3. Numerical simulation 3 

Numerical simulation 3 represented the operation of the PI controller with the circular motion 
path of characteristic point A. The proportional and integral element gains for the controller 
were chosen by experimental trial and error. The results for numerical simulation 3 are shown 
in Figs. 14-16. 
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a) 

 

b) 

 
Fig. 11. Angular velocity trends: a) preset angular velocities (𝜑̇1, 𝜑̇4) and actual angular velocities (𝜑̇1𝑧 , 𝜑̇4𝑧) 

for wheels 1 and 4; b) preset angular velocities (𝜑̇2, 𝜑̇3) and actual angular velocities (𝜑̇2𝑧 , 𝜑̇3𝑧) for wheels 
2 and 3 in numerical simulation 2 

 
a) 

 

b) 

 
Fig. 12. Bias signal trends: e1(t), e2(t), e3(t), e4(t): a) during the numerical simulation; b) at time interval t = (10, 11) s 

of numerical simulation 2 
 

 
Fig. 13. Chart of the control signals: u1(t), u2(t), u3(t), u4(t) in numerical simulation 2 

 
Figures 14a, 14b, 15a, 15b and 16 show the distinctive effect of interference on individual 

signals, most prominently control signal u. The quality index calculated for numerical simulation 3 
from relation (12) was Jq = 3.137·103 rad2/s2. 
 
a) 

 

b) 

 

Fig. 14. Angular velocity trends: a) preset angular velocities (𝜑
̇
1,𝜑

̇
4) and actual angular velocities (𝜑

̇
1𝑧 ,𝜑

̇
4𝑧) 

for wheels 1 and 4; b) preset angular velocities (𝜑
̇
2,𝜑

̇
3) and actual angular velocities (𝜑

̇
2𝑧 ,𝜑

̇
3𝑧) for wheels 

2 and 3 in numerical simulation 3 
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a) b) 

Fig. 15. Bias signal trends: e1(t), e2(t), e3(t), e4(t): a) during the numerical simulation; b) at time interval t = (10, 11) s 
of numerical simulation 3 

Fig. 16. Chart of the control signals: u1(t), u2(t), u3(t), u4(t) in numerical simulation 3 

6.4. Numerical simulation 4 

Numerical simulation 4 represented the operation of the PI FLC with the circular motion path 
of characteristic point A. The gain factors for the individual controller signals were identical to 
those in numerical simulation 2. The results for numerical simulation 3 are shown in Figs. 17-19. 

Figures 17a, 17b, 18a, 18b and 19 show that the interference was much less effective on the 
individual signals than in numerical simulation 3. The quality index calculated from relation (12) 
for numerical situation 3 was Jq = 202.713 rad2/s2. 

The values of quality index Jq determined in the numerical simulations and the comparison of 
the charts shown in Figs. 9b and 12b to those in Figs. 15b and 18b, show that the PI FLC was 
much better at executing tracking control of the omnidirectional mecanum-wheeled platform than 
its conventional PI counterpart. 

a) b) 

Fig. 17. Angular velocity trends: a) preset angular velocities (𝜑̇1, 𝜑̇4) and actual angular velocities (𝜑̇1𝑧 , 𝜑̇4𝑧) 
for wheels 1 and 4; b) preset angular velocities (𝜑̇2, 𝜑̇3) and actual angular velocities (𝜑̇2𝑧 , 𝜑̇3𝑧) for wheels 
2 and 3 in numerical simulation 4 

7. Conclusions

The procedure for tuning an FLC is usually much more difficult than for tuning a conventional 
PID controller. This is due to the high degree of flexibility of the FLC, described by the large 
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number of parameters, which define the fuzzy sets, the inference mechanism and the defuzzification 
mechanism, etc. However, once the FLC was tuned properly and supplied with a small number of 
fuzzy sets and a small rule base, it provided much less bias than the PI controller, which required 
tuning for every numerical simulation, as clearly evidenced by the individual quality index values. 

The application of fuzzy logic in automatic controllers facilitates a different kind of object 
motion control than achieved with conventional methods. Fuzzy algorithms are much more robust 
against changes in the preset system parameters and improve the effectiveness of control 
in comparison to traditional PID controllers. 

a) b) 

Fig. 18. Bias signal trends: e1(t), e2(t), e3(t), e4(t): a) during the numerical simulation; b) at time interval t = (10, 11) s 
of numerical simulation 4 

Fig. 19. Chart of the control signals: u1(t), u2(t), u3(t), u4(t) in numerical simulation 4 

References 

[1] Giergiel, J., Kurc, K., Identification of the mathematical model of an inspection mobile robot 
with fuzzy logic systems and neural networks, Journal of Theoretical and Applied Mechanics, 
49 (1), pp. 209-225, 2011. 

[2] Hendzel, Z., Rykała, Ł., Modelling of dynamics of a wheeled mobile robot with mecanum 
wheels with the use of Lagrange equations of the second kind, International Journal of Applied 
Mechanics and Engineering, 22 (1), pp. 81-99, 2017. 

[3] Hendzel Z., Rykała, Ł., Opis kinematyki mobilnego robota kołowego z kołami typu mecanum, 
Modelowanie Inżynierskie, 26 (57), pp. 5-12, 2015. 

[4] Hendzel Z., Szuster, M., Gierlak, P., Sieci neuronowe i systemy rozmyte, Oficyna Wydawnicza 
Politechniki Rzeszowskiej, pp. 151-167, Rzeszow 2010. 

[5] Kowal, J., Podstawy automatyki. t. I, AGH Uczelniane Wydawnictwa Naukowo-Dydaktyczne, 
pp. 223-229, Krakow 2003. 

[6] Kozłowski, K., Dutkiewicz, P., Wróblewski, W., Modelowanie i sterowanie robotów, 
Wydawnictwo Naukowe PWN, pp. 271-285, Warszawa 2012. 

[7] Mrozek, B., Projektowanie regulatorów rozmytych w środowisku MATLAB-Simulink, 
Pomiary Automatyka Robotyka, 11, pp. 5-12, 2006. 

[8] Piegat, A., Modelowanie i sterowanie rozmyte, Akademicka Oficyna Wydawnicza „Exit”, 
pp. 165-285, Warszawa 1999. 

431



A. Typiak, Ł. Rykała 

[9] Rojek, R., Bartecki, K., Metody sztucznej inteligencji w zastosowaniach automatyki, Pomiary 
Automatyka Kontrola, 52, pp. 29-34, 2006. 

[10] Typiak, A., Łopatka, M. J., Rykała, Ł., Kijek, M., Dynamics of omnidirectional unmanned 
rescue vehicle with mecanum wheels, AIP Conference Proceedings, Vol. 1922 (1), p. 120005, 
AIP Publishing, 2018. 

[11] Yager, R., Filev, D., Podstawy modelowania i sterowania rozmytego, Wydawnictwa Naukowo-
Techniczne, pp. 270-313, Warszawa 1995. 

432

Manuscript received 20 December 2017; approved for printing 30 March 2018 




