PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

High Efficient Photocatalytic Degradation of Methyl Orange Dye in an Aqueous Solution by CoFe2O4-SiO2-TiO2 Magnetic Catalyst

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study successfully synthesized a core-shell-shell in the form of CoFe2O4-SiO2-TiO2 catalyst magnetic and recyclable. The catalyst was employed for the photocatalytic degradation of methyl orange (MO) dye. Subsequently, the catalyst was subjected to XRD, FTIR, SEM-EDS, VSM, as well as UV-DRS characterizations. The photocatalytic degradation was studied as a function of the solution pH, MO concentration, and irradiation time, while the kinetics of photocatalytic degradation and the catalyst reusability were also evaluated. On the basis of the XRD, FTIR, and SEM-EDS characterizations, the CoFe2O4 coating was successfully carried out using SiO2 and TiO2. CoFe2O4-SiO2-TiO2 was discovered to possess magnetic properties with a saturation magnetization of 17.59 emu/g and a bandgap value of 2.4 eV. The photocatalytic degradation of MO followed the Langmuir-Hishelwood model. The optimum degradation was obtained at the MO concentration of 25 mg/L, solution pH of 4, catalyst dose of 0.05 g/L, irradiation time of 160 minutes, MO removal efficiency achieved 93.46%. The regeneration study showed CoFe2O4-SiO2-TiO2 after 5 cycles were able to catalyze the photocatalytic degradation with an MO removal efficiency of 89.96%.
Słowa kluczowe
Rocznik
Strony
118--128
Opis fizyczny
Bibliogr. 43 poz., rys., tab.
Twórcy
  • Department of Chemistry, Faculty of Mathematics and Natural Sciences, Sriwijaya University, Jalan Palembang-Prabumulih, Indralaya, Ogan Ilir, Indonesia
  • Department of Chemistry, Faculty of Mathematics and Natural Sciences, Sriwijaya University, Jalan Palembang-Prabumulih, Indralaya, Ogan Ilir, Indonesia
autor
  • Department of Biology, Faculty of Mathematics and Natural Sciences, Sriwijaya University, Jalan Palembang-Prabumulih, Indralaya, Ogan Ilir, Indonesia
  • Doctoral Program of Environmental Science, Graduate School, Sriwijaya University, Jalan Padang Selasa 524 Bukit Besar, Palembang 30139, South Sumatra, Indonesia
  • Department of Chemistry, Faculty of Mathematics and Natural Sciences, Sriwijaya University, Jalan Palembang-Prabumulih, Indralaya, Ogan Ilir, Indonesia
Bibliografia
  • 1. Ahmad M., Ahmed E., Hong Z.L., Ahmed W., Elhissi A., Khalid N.R. 2014. Photocatalytic, sonocatalytic and sonophotocatalytic degradation of Rhodamine B using ZnO/CNTs. Ultrasonics Sonochemsitry, 21(2), 761–773.
  • 2. Ajabshir S.Z., Niasari M.S. 2019. Preparation of magnetically retrievable CoFe2O4-SiO2-Dy2Ce2 O7 nanocomposites as novel photocatalyst for higly efficient degrdation of organic contaminants. Composites Part B: Engineering, 174, 1–9.
  • 3. Ajmal A., Majeed I., Malik R.N., Idriss H., Nadeem M.A. 2014. Principles and mechanisms of photocatalytic dye degradation on TiO2 based photocatalytic a comparative overview. RSC Advances, 4, 37003–37026.
  • 4. Alghamdi A.A., Al-Odayni A.B., Saeed W.S., Almutairi MS., Alharthi, F.A.A, Aouak T., Al-Kahtani AA. 2019. Adsorption of azo dye Methyl Orange from aquaeous solutions using alkali-activated polypyrrole-based graphene oxide. Molecules, 24, 1–17.
  • 5. Amulya M.A.S., Nagaswarupa H.P., Kumar M.R.A., Ravikumar C.R., Prashantha S.C., Kusuma KB. 2020. Sonochemical synthesis of NiFe2O4 nanoparticles: Characterization and their photocatalytic and electrochemical applications. Applied Surface Sciences Advances, 1, 1–10.
  • 6. Awazu K., Fujimahi M., Rockstuhi C., Tominaga J., Murakami H., Ohki Y. 2008. A plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide. Journal of the American Chemical Society, 130(5), 1676–1680.
  • 7. Behzadi S., Nonahal B., Royaee S.J., Asadi A.A. 2020. TiO2-SiO2-Fe3O4 magnetic nanoparticles synthesis and appication in methyl orange photocatalytic removal. Water Science & Technology, 82 (11), 2432–2445.
  • 8. Chan T., Zheng Y., Lin J.M., Chen G. 2008. Study on the photocatalytic degradation of Methyl Orange in water using Ag-ZnO as catalyst by Liquid Chromatograpgy Electrospray Ionization Ion-Trap Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 19, 997–1003.
  • 9. Chen W., Xiao H., Xu H., Ding T., Gu Y. 2015. Photodegrdation of Methylene Blue by TiO2-Fe3O4-Bentonite magnetic nanocomposite. International Journal of Photoenergy, 2015, 1–7.
  • 10. Cheng J., Ma R., Li M., Wu J., Liu F., Zhang X. 2012. Anatase nanocrystals coating on silica-coated magnetite: role of polyacrylic acid treatment and its photocatalytic properties. Chemical Engineering Journal, 210(7), 80–86.
  • 11. Djellabi, R., Yang, B., Wang, Y., Cui, X., Zhao, X. 2019. Carbonaceous biomass-titania composites with Ti–O–C bonding bridge for efficient photocatalytic reduction of Cr(VI) under narrow visible light. Chemical Engineering Journal, 366, 172–180.
  • 12. El-Shobaky G., Turky A., Mostafa N., Mohamed S. 2010. Effect of preparation conditions on physicochemical, surface and catalytic properties of cobalt ferrite prepared by coprecipitation. Journal of Alloys and Compounds, 493, 415–422.
  • 13. Fu C., Liu X., Wang Y., Li L., Zhang Z. 2019. Preparation and characterization of Fe3O4-SiO2-TiO2-CorGO magnetic visible light photocatalyst for water treatment. RSC Advances, 9, 20256–20265.
  • 14. Gebrezgiabher M., Gebreslassie G., Gebretsadik T., Yeabyo G., Elemo F., Bayeh Y., Thomas M., Linert W. 2019. AC-Doped TiO2-Fe3O4 Nanocomposite for Photocatalytic Dye 2018. Degradation under Natural Sunlight Irradiation. Journal of Composite Science, 3(3), 1–11.
  • 15. Ge J., Zhang Y., Heo Y.J., Park S.J. 2019. Advanced design and synthesis of composite photocatalysts for the remediation of wastewater: a review. Catalysts, 9(2), 1–32.
  • 16. Habila M.A., Al-Othman Z.A., El-Toni A.M., Labis J.P., Soylak M. Synthesis and application of Fe3O4-SiO2-TiO2 for photocatalitic decomposition of organic matrix simultaneously with magnetic solid phase extraction of heavy metals prior to ICP-MS analysis. Talanta, 154, 539–547.
  • 17. Huang J.H., Huang K.L., Liu S.Q., Wang A.T., Yan C. 2008. Adsorption of Rhodamine B nad Methyl Orange on a hypercrosslinked polymer adsorbent in aqueous solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 330(1), 55–61.
  • 18. Houshiar M., Zebhi F., Razi Z.J., Alidoust A., Askari Z. 2014. Synthesis of cobalt ferrite (CoFe2O4) nanoparticles using combustion, coprecipitation, and precipitation methods: A comparison study of size, structural, and magnetic properties. Journal of Magnetism and Magnetic Materials, 371, 43–48.
  • 19. Jurek A.Z., Bielan Z., Dudziak S., Wolak I., Sobczak T., Klimczuk T., Nowaczyk G., Hupka J. 2017. Design and application of magnetic photocatalysts for water treatment. The effect of particle charge on surface functionality. Catalysts, 360(7), 1–18.
  • 20. Jorfi S., Kakavandi B., Motlagh H.R., Jaafarzadeh N. 2017. A novel combination of oxidative degradation for benzotriazole removal using TiO2 loaded on FeIIFe2 IIIO4-C as an efficient activator of peroxymonosulfate. Applied Catalysis B: Environmental, 219, 216–230.
  • 21. Konstantinou I.K., Albanis T.A. 2004. TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: Kinetic and mechanistic investigations. Applied Catalysis B: Environmental, 49, 1–14.
  • 22. Koohestani H., Sadrnezhaad S.K. 2016. Photocatalytic degradation of Methyl Orange and Cyanide by Using TiO2-CuO composite. Desalination and Water Treatment, 2016, 1–10.
  • 23. Lee S.A., Choo K.H., Lee CH., Lee H.I., Hyeon T., Choi W., Kwon H.H. 2001. Use of ultrafiltration membranes for the separation of TiO2 photocatalysts in drinking water treatment. Industrial & Engineering Chemistry Research, 40(7), 1712–1719.
  • 24. Liu L., Hu N., An Y., Du X., Zhang X., Li Y., Zeng Y., Cui Z. 2020. Ag2 O and NiO decorated CuFe2O4 with enhaced photocatalytic performance to improve the degradation efficiency of Methylene Blue. Materials, 13, 1–12.
  • 25. Mercyrani B., Maya R.H., Lopez M.S., Th-Th C., Velumani S. 2017. Photocatalytic degrAdation of Orange G using TiO2-Fe3O4 nanocomposite. Journal of Materials Science: Materials in Electronics, 29, 15436–15444.
  • 26. Mishra P., Patnaik S., Parida K. 2019. An overview of recent progresses on noble metal modified magnetic Fe3O4 for photocatalytic pollutant degradation and H2 evolution. Catalysis Science & Technology, 9, 916–941.
  • 27. Moosavi S., Li R.Y.M., Lai C.W., Yusof Y., Gan S., Akbarzadeh O., Chowhury Z.Z., Yue X.G, Johan M.R. 2020. Methylene blue dye photocatalytic degradation over synthesises Fe3O4-AC-TiO2 nanocatalyst: Degrdation and reusability Studies. Nanomaterials, 10(12), 1–15.
  • 28. Mortazavi D.S., Salavati D.M., Abbasi N.O.A.A. 2017. Fabrication and characterization of Fe3O4-SiO2-TiO2-Ho nanostructures as a novel and highly efficient photocatalyst for degradation of organic pollution. Journal of Energy Chemistry, 26(1), 17–23.
  • 29. Mrotek E., Dudziak S., Malinowska I., Pelczarski D., Ryzynska Z., Juruk A.Z. 2020. Improved degradation of etodolac in the presence of core-shell ZnFe2O4-SiO2-TiO2 magnetic photocalyst. Science of The Total Environment, 724, 1–12.
  • 30. Nair P.G., Vijayakumar S., Lisluke T., Mathew M.S.P, Aravindakumar CT. 2014. Degradation of dyestuff pollutant Sudan I using advanced oxidation process. Journal of water Resource and Protection, 6(14), 1276–1283.
  • 31. Ojemaye, M.O., Okoh O.O., Okoh A.I. 2017. Performance of NiFe2O4-SiO2-TiO2 magnetic photocatalyst for the effective photocatalytic reduction of Cr(VI) in aquation solutions. Journal of Nanomaterials, 2017, 1–11.
  • 32. Pastravanu C.C., Ignat M., Popovici E., Harabagiu V. 2014. TiO2-coated mesoporous carbon: Conventional vs. microwave-annealing process. Journal of Hazardous Materials, 278, 382–390.
  • 33. Pourzad A., Sobhi H.R., Behbahani M., Esrafili A., Kalantary R.R., Kermani M. 2020. Efficient visible light-induced photocatalytic removal of paraquat using N-doped TiO2-SiO2-Fe3O4 nanocomposite. Journal of Molecular Liquids, 299, 1–7.
  • 34. Rashid J., Barakat M.A., Ruzmanova Y., Chianese A. 2015. Fe3O4-SiO2-TiO2 nanoparticles for photocatalytic degradation of 2-chlorophenol in simulated wastewater. Environmental Science and Pollution Research, 22, 3149–3157.
  • 35. Rajput J.K., Kaur G. 2014. Synthesis and applications of CoFe2 O4 nanoparticles for multicomponent reaction. Catalysis Science & Technology, 4, 142–151.
  • 36. Shojaie A., Fattahi M., Jorfi S., Ghasemi B. 2018. Synthesis and evaluations of Fe3O4-TiO2-Ag nanocomposites for photocatalytic degradation of 4-chlorophenol (4-CP): effect of Ag and Fe compositions. International Journal of Industrial Chemistry, 9, 141–151.
  • 37. Stefan M., Leostean C., Pana O., Toloman D., Popa A., Perhaita I., Senila M., Marincas O., Tudoran LB. 2016. Magnetic recoverable Fe3O4-TiO2 : Eu composite nanoparticles with enhanced photocatalytic activity. Applied Surface Science, 390, 248–259.
  • 38. Subramonian W., Wu T.Y., Chai S.P. 2017. Photocatalytic degradation of industrial pulp and paper mill effluent using synthesized magnetic Fe2O3-TiO2: Treatment efficiency and characterizations of reused photocatalyst. Journal of Environmental management, 187, 298–310.
  • 39. Suzuki H., Araki S., Yamamoto H., 2015. Evaluation of advanced oxidation processes (AOP) using O3 , UV, and TiO2 for the degradation of phenol in water. Journal of Water Process Engineering, 7, 54–60.
  • 40. Sonu, Duta V., Sharma S., Raizada P., Bandegharaei A.H., Gupta V.K., Singh P. 2019. Review on augmentation in photocatalytic activity of CoFe2 O4 via heterojunction formation for photocatalysis of organic pollutants in water. Journal of Saudi Chemical Society, 23, 1119–1136.
  • 41. Takdastan A., Kakavandi B., Azizi M., Golshan M. 2018. Efficient activation of peroxymonosulfate by using ferroferric oxide supported on carbon/UV/US system: A new approach into catalytic degradation of bisphenol A. Chemical Engineering Journal, 331, 729–743.
  • 42. Trabelsi H., Atheba G.P., Hentati O, Meriette Y.D, Robert D, Drogui P., Ksibi M. 2016. Solar photocatalytic decolorization and degradation of Methyl Orange using supported TiO2 . Journal of Advanced Oxidation Technologies, 19 (1), 79–84.
  • 43. Wysocka I., Kowalska E., Trzcinski K., Lapinski M., Nowaczyk G., Jurek A.Z. 2018. UV-vis-induced degradation of phenol over magnetic photocatalysts modified with Pt, Pd, Cu and Au nanoparticles. Nanomaterials, 8(1), 1–20.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e0d172e7-57b1-448b-9ec7-6c4f8a09b765
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.