PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Body Size Distribution of Spider Species in Various Forest Habitats

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The body size is one of the main attributes of living organisms. The knowledge of body size patterns of co-occurring species and the related factors can contribute to the understanding of many ecological processes. The aim of the study was the analysis of the distribution of the spider species of different size in heterogeneous forest habitats: ground, herbaceous vegetation, tree trunks and leaves. The research was conducted in deciduous stands of the Białowieża Forest (eastern Poland). Spiders were collected by: a) pitfall traps and sieving the litter through an entomological sieve for the ground layer; b) sweep-netting for herbaceous vegetation; c) bark traps for tree trunks and d) shaking the branches of trees and shrubs for leaves. In total, 247 spider species belonging to 22 families were recorded: 195 species in the ground layer, 122 in herbaceous vegetation, 60 on trunks, and 48 on leaves. The analysis revealed that ground layer was inhabited by the small sized species (mean 5.2 ± 0.11 mm) while larger species inhabited herbaceous vegetation (mean 6.6 ± 0.26 mm), trunks (7.2 ± 0.20 mm) and leaves (6.8 ± 0.41 mm). Moreover, the mean species body size decreased with the increasing number of collected species. Several potential mechanisms are discussed as those determining the preference of various sized spider species in particular habitats like different microclimatic conditions, the nutritional quality of prey and predation. Moreover, the very likely reason of differences in the size of spider species between the ground layer and other habitats is the most complex structure of the former habitat.
Rocznik
Strony
359--370
Opis fizyczny
Bibliogr. 55 poz., tab., wykr.
Twórcy
autor
  • Siedlce University of Natural Sciences and Humanities, Faculty of Natural Science, Department of Zoology, B. Prusa 12, 08- 110 Siedlce, Poland
autor
  • Siedlce University of Natural Sciences and Humanities, Faculty of Natural Science, Department of Zoology, B. Prusa 12, 08- 110 Siedlce, Poland
Bibliografia
  • [1] Askenmo C., von Brömssen A., Ekman J., Jansson C. 1977 — Impact of some wintering birds on spider abundance in spruce — Oikos, 28: 90-94.
  • [2] Behmer S. T. 2009 — Insect herbivore nutrient regulation — Ann. Rev. Entomol. 54: 165-187.
  • [3] Blueweiss L., Fox H., Kudzma V., Nakashima D., Peters R., Sams S. 1978 — Relations between body size and some life history parameters — Oecologia, 37: 257-272.
  • [4] Bobiec A., van der Burgt H., Meijer K., Zuyderduyn C., Haga J., Vlaanderen B. 2000 — Rich deciduous forests in Białowieża as a dynamic mosaic of developmental phases: premises for nature conservation and restoration management — Forest Ecol. Manag. 130: 159-175.
  • [5] Bolker B. M., Brooks M. E., Clark C. J., Geange S. W., Poulsen J. R., Stevens M. H. M., White J. S. S. 2009 — Generalized linear mixed models: a practical guide for ecology and evolution. — Trends Ecol. Evol. 24: 127-135.
  • [6] Brown J. H. 2004 — Toward a metabolic theory of ecology — Ecology, 85: 1771-1789.
  • [7] Brown J. H., Nicoletto P. F. 1991 — Spatial scaling of the species composition - body masses of North-American land mammals — Am. Nat. 138: 1478-1512.
  • [8] Butler V. P., Haddad C. R. 2011 — Spider assemblages associated with leaf litter of three tree species in central South Africa (Arachnida: Araneae) — Afr. J. Ecol. 49: 301-310.
  • [9] Clary W. P., Folliot P. F. 1969 — Water holding capacity of ponderosa pine forest floor layers — J. Soil Water Conserv. 24: 22-23.
  • [10] Coetzee B. W. T., le Roux P. C., Chown S. L. 2013 — Scale effects on the body size frequency distributions of African birds: patterns and potential mechanisms — Global Ecol. Biogeogr. 22: 380-390.
  • [11] Curtis D. J., Morton E. 1974 — Notes on spiders from tree trunks of different bark texture; with indices of diversity and overlap — Bull. Br. Arachnol. Soc. 3: 1-5.
  • [12] DeVito J., Formanowicz D. R. 2003 — The effects of size, sex, and reproductive condition on thermal and desiccation stress in a riparian spider (Pirata sedentarius, Araneae, Lycosidae) — J. Arachnol. 31: 278-284.
  • [13] Edwards N. T., Sollins P. 1973 — Continuous measurement of carbon dioxide evolution from partitioned forest floor components — Ecology, 54: 406-412.
  • [14] Eichenberger B., Siegenthaler E., Schmidt-Entling M. H. 2009 — Body size determines the outcome of competition for webs among alien and native sheetweb spiders (Araneae: Linyphiidae) — Ecol. Entomol. 34: 363-368.
  • [15] Entling W., Schmidt-Entling M. H., Bacher S., Brandl R., Nentwig W. 2010 — Body size-climate relationships of European spiders — J. Biogeogr. 37: 477-485.
  • [16] Gibb H., Muscat D., Binns M. R., Silvey C. J., Peters R. A., Warton D. I., Andrew N. R. 2015 -Responses of foliage-living spider assemblage composition and traits to a climatic gradient in Themeda grasslands — Austral. Ecol. 40: 25-237.
  • [17] Grimbacher P. S., Stork N. E. 2007 — Vertical stratification of feeding guilds and body size in beetle assembages from an Australian tropical rainforest — Austral. Ecol. 32: 77-85.
  • [18] Guevara J., Avilés L. 2011 — Influence of body size and level of cooperation on the prey capture efficiency of two sympatric social spiders exhibiting an included niche pattern — Funct. Ecol. 25: 859-867.
  • [19] Gunnarsson B. 1992 — Fractal dimension of plants and body size distribution in spiders — Funct. Ecol. 6: 636-641.
  • [20] Gunnarsson B. 1996 — Bird predation and vegetation structure affecting spruce-living arthropods in a temperate forest — J. Anim. Ecol. 65: 389-397.
  • [21] Gunnarsson B. 1998 — Bird predation as a sex- and size-selective agent of the arboreal spider Pityohyphantes phrygianus — Funct. Ecol. 12: 453-458.
  • [22] Gunnarsson B. 2007 — Bird predation on spiders: ecological mechanisms and evolutionary consequences — J. Arachnol. 35: 509-529.
  • [23] Homburg K., Schuldt A., Drees C., Assmann T. 2013 — Broad-scale geographic patterns in body size and hind wing development of western Palaearctic carabid beetles (Coleoptera: Carabidae) — Ecography, 36: 166-177.
  • [24] Hutchinson G. E., MacArthur R. H. 1959 — A theoretical ecological model of size distributions among species of animals — Am. Nat. 93: 117-125.
  • [25] Lapinski W., Tschapka M. 2014 — Desiccation resistance reflects patterns of microhabitat choice in a Central American assemblage of wandering spiders — J. Exp. Biol. 217: 2789-2795.
  • [26] Meiri S., Thomas G. H. 2007 — The geography of body size - chalenges of the interspecific approach — Global Ecol. Biogeogr. 16: 689-693.
  • [27] Morse D. R., Lawton J. H., Dodson M. M., Williamson M. H. 1985 — Fractal dimension of vegetation and the distribution of arthropod body lengths — Nature, 314: 731-733.
  • [28] Nagy K. A. 1987 — Field metabolic rate and food requirement scaling in mammals and birds — Ecol. Monogr. 57: 111-128.
  • [29] Nentwig W., Wissel C. 1986 — A comparison of prey lengths among spiders — Oecologia, 68: 595-600.
  • [30] Nentwig, W., Blick T., Gloor D., Hänggi A., Kropf C. 2015 — Spiders of Europe — www.araneae.unibe.ch. version 10.2015.
  • [31] Novotny V., Wilson M. R. 1997 — Why are there no small species among xylem-sucking insects? — Evol. Ecol. 11:419-437.
  • [32] Oguri H., Yoshida T., Nakamura A., Soga M., Hijii N. 2014 — Vertical stratification of spider assemblages in two conifer plantations in central Japan — J. Arachnol. 42: 34-43.
  • [33] Olalla-Tárraga M. Á., Rodríguez M. Á. 2007 — Energy and interspecific body size patterns of amphibian faunas in Europe and North America: anurans follow Bergmann's rule, urodeles its converse — Global Ecol. Biogeogr. 16: 606-617.
  • [34] Patterson B. D., Dick C. W., Dittmar K. 2008 — Parasitism by bat flies (Diptera: Streblidae) on neotropical bats: effects of host body size, distribution, and abundance — Parasitol. Res. 103: 1091-1100.
  • [35] Pekár S. 2005 — Horizontal and vertical distribution of spiders (Araneae) in sunflowers — J. Arachnol. 33: 197-204.
  • [36] Rodríguez M. Á., López-Sañudo I. L., Hawkins B. A. 2006 — The geographic distribution of mammal body size in Europe — Global Ecol. Biogeogr. 15: 173-181.
  • [37] Shimazaki A., Miyashita T. 2005 — Variable dependence on detrital and grazing food webs by generalist predators: aerial insects and web spiders — Ecography, 28: 485-494.
  • [38] Stevenson B. G., Dindal D. L. 1982 — Effect of leaf shape on forest litter spiders: community organization and microhabitat selection of immature Enoplognatha ovata (Clerck) (Theridiidae) — J. Arachnol. 10: 165-178.
  • [39] Stork N. E., Blackburn T. M. 1993 — Abundance, body size and biomass of arthropods in tropical forest — Oikos, 67: 483-489.
  • [40] Sundberg I., Gunnarsson B. 1994 — Spider abundance in relation to needle density in spruce — J. Arachnol. 22: 190-194.
  • [41] Tolonen K. T., Hämäläinen H., Holopainen I. J., Mikkonen K., Karjalainen J. 2003 — Body size and substrate association of littoral insects in relation to vegetation structure — Hydrobiologia, 499: 179-190.
  • [42] Tomiałojć L. 1991 — Characteristics of Old Growth in the Białowieża Forest, Poland — Nat. Area J. 11: 7-18.
  • [43] Uetz G. W. 1979 — The influence of variation in litter habitats on spider communities — Oecologia, 40: 29-42.
  • [44] Ulrich W. 2006 — Body size distribution of European Hymenoptera — Oikos, 114: 518-528.
  • [45] Ulrich W., Fiera C. 2010 — Environmental correlates of body size distributions of European springtails (Hexapoda: Collembola) — Global Ecol. Biogeogr. 19: 905-915.
  • [46] Ulrich W., Szpila K. 2008 — Body size distributions of eastern European Diptera — Pol. J. Ecol. 56: 557-568.
  • [47] Ulrich W., Komosiński K., Zalewski M. 2007 — Body size and biomass distributions of carrion visiting beetles: do cities host smaller species? — Ecol. Res. 23: 241-248.
  • [48] Venables W. N., Dichmont C. M. 2004 — GLMs, GAMs and GLMMs: an overview of theory for applications in fisheries research — Fish. Res. 70: 319-337.
  • [49] Vincent L. S. 1993 — The natural history of the California Turret Spider Atypoidesriversi (Araneae, Antrodiaetidae): demographics, growth rates, survivorship, and longevity — J. Arachnol. 21: 29-39.
  • [50] Wagner J. D., Toft S., Wise D. H. 2003 — Spatial stratification in litter depth by forest-flor spiders — J. Arachnol. 31: 2839.
  • [51] Waldorf E. S. 1976 — Spider size, microhabitat selection, and use of food — Am. Midl. Nat. 96: 76-87.
  • [52] Wardhaugh C. W., Edwards W., Stork N. E. 2013 — Body size variation among invertebrates inhabiting different canpy microhabitat: flower visitors are smaller — Ecol. Entomol. 38: 101-111.
  • [53] Williamson M. H., Lawton J. H. 1991 — Fractal geometry of ecological habitats (In: Habitat structure. The Physical arrangement of objects in space, Eds: S. S. Bell, E. D. McCoy, H. R. Mushinsky) - Chapman and Hall, London, pp. 69-86.
  • [54] Wise D. H. 1993 — Spiders in ecological webs — Cambridge University Press, Cambridge, 328 pp.
  • [55] Ziesche T. M., Roth M. 2008 — Influence of environmental parameters on small-scale distribution of soil-dwelling spiders in forests: What makes the difference, tree species or microhabitat? — Forest Ecol. Manag. 255: 738-752.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e0cf7270-d86a-428c-8eea-4483db014ce0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.