PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

The influence of the rolling method on cold forming ability of explosive welded Ti/steel sheets

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Products made of clad sheets are a cost-effective alternative to products made entirely of cladding material. The cladding process aims to enhance functional properties, such as corrosion resistance and tribological properties, or modify mechanical properties and conductivity. This publication analyzes the influence of the rolling method on the cold forming ability of explosive welded Ti/steel sheets. Special attention was paid to the quality of the connection between the sheets, as it significantly impacts clad sheet formability. The drawability of these clad sheets was assessed based on the mechanical and technological properties, as well as through microstructural analyses. Experimental analyses revealed that hot rolling of the clad leads to the disappearance of the wave character of the interface and formation in its area of the Frenkel plane and interface layer, which significantly affect the mechanical and technological properties of the analyzed clad. Better cold forming ability, especially in reverse bend test, were obtained for asymmetrically rolled clad, which exhibits greater uniformity of structure.
Rocznik
Strony
art. no. e191, 2024
Opis fizyczny
Bibliogr. 51 poz., rys., wykr.
Twórcy
  • Department of Materials Science, Faculty of Mechanical Engineering and Aeronautics, Rzeszów University of Technology, 12 Powstancow Warszawy Ave., 35-959 Rzeszow, Poland
  • Department of Metallurgy and Materials Engineering, Faculty of Production Engineering and Materials Technology, Czestochowa University of Technology, 69 Dabrowskiego St., 42-201 Czestochowa, Poland
  • Department of Technology and Automation, Faculty of Mechanical Engineering and Computer Science, Czestochowa University of Technology, 69 Dabrowskiego St., 42-201 Czestochowa, Poland
  • Department of Metallurgy and Materials Engineering, Faculty of Production Engineering and Materials Technology, Czestochowa University of Technology, 69 Dabrowskiego St., 42-201 Czestochowa, Poland
  • Department of Materials Science, Faculty of Mechanical Engineering and Aeronautics, Rzeszów University of Technology, 12 Powstancow Warszawy Ave., 35-959 Rzeszow, Poland
  • Department of Materials Science, Faculty of Mechanical Engineering and Aeronautics, Rzeszów University of Technology, 12 Powstancow Warszawy Ave., 35-959 Rzeszow, Poland
  • Department of Civil Engineering, Faculty of Civil Engineering, Czestochowa University of Technology, 69 Dabrowskiego St., 42-201 Czestochowa, Poland
Bibliografia
  • 1. Xia R, Zhang K, Shu F, Zhang X, Yan L, Li Ch. Effects of B content on wear and corrosion resistance of laser-cladded co-based alloy coatings. Mater Sci-Pol. 2023;41(4):13–23. https://doi.org/10.2478/msp-2023-0040.
  • 2. Cho Y-R. Clad metals: fabrication, properties, and applications.Metals. 2021;11:1186. https://doi.org/10.3390/met11081186.
  • 3. Poloczek T, Lont A, Górka J. Structure and properties of laser-cladded Inconel 625-based in situ composite coatings on S355JR substrate modified with Ti and C powders. Mater Sci-Pol.2022;40(4):14–27. https://doi.org/10.2478/msp-2022-0039.
  • 4. Szachogłuchowicz I, Śnieżek L, Ślęzak T. Mechanical properties analysis of explosive welded sheet of AA2519-Ti6Al4V with interlayer of AA1050 subjected to heat-treatment. Materials.2022;15:4023. https://doi.org/10.3390/ma15114023.
  • 5. Wu X, Shi C, Fang Z, Lin Z, Sun Z. Comparative study on welding energy and Interface characteristics of titanium-aluminum explosive composites with and without interlayer. Mater Des. 2021;197: 109279. https://doi.org/10.1016/j.matdes.2020.109279.
  • 6. Paul H, Faryna M, Prazmowski M, Banski R. Changes in the bonding zone of explosively welded sheets. Arch Metall Mater.2011;56(2):463–74. https://doi. org/10.2478/v10172-011-0050-8.
  • 7. Gałka A, Najwer M. Explosive cladding of titanium and aluminium alloys on the example of Ti6Al4V-AA2519 joints. Arch Metall Mater. 2015;60(4):2985–91. https:// doi. org/ 10. 1515/amm-2015-0477.
  • 8. Gałka A. Application of explosive metal cladding in the manufacture of new, advanced layered materials exemplified by titaniumTi6Al4V—aluminium AA2519 bonding. High Energy Mater.2020;12(1):184–91. https://doi.org/10.22211/matwys/0111E.
  • 9. Haile F, Adkins J, Corradi M. A Review of the use of titanium forre in forcement of masonry structures. Materials. 2022;15:4561.https://doi.org/10.3390/ma15134561.
  • 10. Adamus J. Applications of titanium sheets in modern building construction. Adv Mater Res. 2014;1020:9–14. https://doi.org/10.4028/www.scientific.net/AMR.1020.9.
  • 11. Rohatgi H, Yuvaraj N. Analyse the effect of clad ratio on thestress-strain curve of titanium-clad bimetallic steel for different strain rates and temperatures using Johnson-Cook model. Mater Today: Proc. 2022;56(6):3702–13. https:// doi. org/ 10. 1016/j.matpr.2021.12.447.
  • 12. Hu J, Huang H, Deng P, Wang G. Galvanic corrosion behavior of titanium-clad steel plate in the marine environment. Mater Corros.2022;73(1):887–96. https://doi.org/10.1002/maco.202113019.
  • 13. Hai L, Ban H, Huang C, Shi Y. Experimental cyclic behaviour and constitutive modelling of hot-rolled titanium-clad bimetallic steel. Constr Build Mater. 2022;360: 129591. https://doi. org/10.1016/j.conbuildmat.2022.129591.
  • 14. Sana G. Titanium sheet hot forming in the aerospace industry. MATEC Web Conf. 2020;321:04020. https:// doi. org/ 10. 1051/matecconf/202032104020.
  • 15. Williams JC, Boyer RR. Opportunities and issues in the application of titanium alloys for aerospace components. Metals.2020;10:705. https://doi.org/10.3390/met10060705.
  • 16. Yan X, Cao W, Li H. Biomedical alloys and physical surface modifications: a mini-review. Materials. 2022;15:66. https://doi.org/10.3390/ma15010066.
  • 17. Khan HA, Asim K, Akram F, Hameed A, Khan A, Mansoor B.Roll bonding processes: state-of-the-art and future perspectives. Metals. 2021;11:1344. https://doi.org/10.3390/met11091344.
  • 18. Giudice F, Missori S, Murdolo F, Sili A. Metallurgical characterization of the interfaces in steel plates clad with austenitic steel or high Ni alloys by hot rolling. Metals. 2020;10:286. https://doi.org/10.3390/met10020286.
  • 19. Dhib Z, Guermazi N, Gaspérini M, Haddar N. Cladding of low-carbon steel to austenitic stainless steel by hot-roll bonding: microstructure and mechanical properties before and after welding. Mater Sci Eng A. 2016;656:130–41. https://doi.org/10.1016/j.msea.2015.12.088.
  • 20. Li BX, Chen ZJ, He WJ, Wang PJ, Lin JS, Wang Y, Peng L,Li J, Liu Q. Effect of interlayer material and rolling temperaturę on microstructures and mechanical properties of titanium/steelclad plates. Mater Sci Eng A. 2019;749:241–8. https://doi.org/10.1016/j.msea.2019.02.018.
  • 21. Guo X, Ren Z, Chai Z, Wang T, Huang Q. Research on microstructure and mechanical properties of TC4/304 clad plates by asymmetric rolling with local strong stress. Mater Sci Eng A.2024;893: 146166. https://doi.org/10.1016/j.msea.2024.146166.
  • 22. Wu Y, Wang T, Ren Z, Liu Y, Huang Q. Evolution mechanism of microstructure and bond strength based on interface diffusion and IMCs of Ti/steel clad plates fabricated by double-layered hotrolling. J Mater Process Tech. 2022;310: 117780. https://doi.org/10.1016/j.jmatprotec.2022.117780.
  • 23. Gholami MD, Hashemi R, Beham B. Investigation of microstructure evolution on the fracture toughness behaviour of brass/lowcarbon steel/brass clad sheets fabricated by cold roll bonding pro-cess. J Mater Res Technol. 2023;25:2570–88. https://doi.org/10.1016/j.jmrt.2023.06.103.
  • 24. Han J, Li S, Gao X, Huang Z, Wang T, Huang Q. Effect of annealing process on interface microstructure and mechanical property of the Cu/Al corrugated clad sheet. J Mater Res Technol. 2023;23:284–99. https://doi.org/10.1016/j.jmrt.2022.12.188.
  • 25. Liang H, Luo N, Chen Y, Yao Y, Wang J, Li X, Chen X. Experimental and numerical investigations on interface microstructure characteristics and wave formation mechanism of Sn/Cu explosive welded plates. Compos Interface. 2023;30(3):1–25. https://doi.org/10.1080/09276440.2023.2179256.
  • 26. Paul H, Miszczyk MM, Chulist R, Prażmowski M, Morgiel J, Gałka A, Faryna M, Brisset F. Microstructure and phase constitution in the bonding zone of explosively welded tantalum and stainless steel sheets. Mater Design. 2018;153:177–89. https://doi.org/10.1016/j.matdes.2018.05.014.
  • 27. Yan JC, Zhao DS, Wang CW, Wang LY, Wang Y, Yang SQ. Vacuum hot roll bonding of titanium alloy and stainless steel using nickel interlayer. Mater Sci Technol. 2009;25(7):914–8. https://doi.org/10.1179/174328408X365766.
  • 28. Chai XY, Pan T, Chai F, Luo XB, Su H, Yang CF. Interlayer engineering for titanium clad steel by hot roll bonding. J Iron Steel ResInt. 2018;25:739–45. https://doi.org/10.1007/s42243-018-0106-3.
  • 29. Yang DH, Luo ZA, Xie GM, Jiang T, Zhao S, Misra RDK. Inter-facial microstructure and properties of a vacuum roll-cladding titanium-steel clad plate with a nickel interlayer. Mater Sci EngA. 2019;753:49–58. https://doi.org/10.1016/j.msea.2019.03.008.
  • 30. Kawalek A, Dyja H, Mroz S, Knapinski M. Effect of plate asymmetric rolling parameters on the change of the total unit pressure of roll. Metalurgija. 2011;50(3):163–6.
  • 31. Gronostajski Z, Pater Z, Madej L, Gontarz A, Lisiecki L, Łukaszek-Sołek A, Łuksza J, Mróz S, Muskalski Z, Muzykiewicz W, Pietrzyk M, Śliwa RE, Tomczak J, Wiewiórowska S, Winiarski G, Zasadziński J, Ziółkiewicz S. Recent development trends in metal forming. Arch Civ Mech Eng. 2019;19:898–941. https://doi.org/10.1016/j.acme.2019.04.005.
  • 32. Rodak K, Urbańczyk-Gucwa A, Jabłońska MB. Microstructure and properties of CuCr0.6 and CuFe2 alloys after rolling with the cyclic movement of rolls. Arch Civ Mech Eng. 2018;18(2):500–7.https://doi.org/10.1016/j.acme.2017.07.001.
  • 33. Liu J, Kawalla R. Influence of asymmetric hot rolling on microstructure and rolling force with austenitic steel. Trans Nonferrous Met Soc China. 2012;22:504–11. https://doi.org/10.1016/S1003-6326(12)61753-1.
  • 34. Wierzba A, Mróz S, Szota P, Stefanik A, Mola R. The influence of the asymmetric ARB process on the properties of Al-Mg-Almulti-layer sheets. Arch Metall Mater. 2015;60:2821–5. https://doi.org/10.1515/amm-2015-0450.
  • 35. Jablońska M, Śmiglewicz A. A study of mechanical properties of high manganese steels after different rolling conditions. Metalurgija. 2015;54(4):619–22.
  • 36. Sun L, Ding J, Zhang J, Li H, Wang G. Numerical simulation and deformation behavior of a Ti/steel clad plate during the rolling process. Metals. 2023;13(2):218. https://doi.org/10.3390/met13020218.
  • 37. Jin HR, Wei R, Wang YH, Yi YL, Jia CZ, Zhao DX. Vacuum hotrolling preparation of a stainless steel clad plate and its numerical simulation. Strength Mater. 2022;54:144–53. https://doi.org/10.1007/s11223-022-00388-1.
  • 38. Chu Q, Tong X, Xu S, Zhang M, Li J, Yan F-X, Yan C. Interfacial investigation of explosion-welded Titanium/steel bimetallicplates. J Mater Eng Perform. 2020;29:78–86. https://doi.org/10.1007/s11665-019-04535-9.
  • 39. Kumar P, Ghosh SK, Saravanan S, Barma JD. Significance of the interlayer in explosive welding of similar and dissimilar materials: review. Combust Explos Shock Waves. 2023;59(3):253–78.https://doi.org/10.1134/S0010508223030012.
  • 40. Ming Y, Ma H-H, Shen Z-W. Study on explosive welding of Ta2 titanium to Q235 steel using colloid water as a covering for explosives. J Mater Res Technol. 2019;8(6):5572–80. https://doi.org/10.1016/j.jmrt.2019.09.025.
  • 41. Prazmowski M, Najwer M, Paul H, Andrzejewski D. Influence of explosive welding parameters on properties of bimetal Ti-carbon steel. MATEC Web Conf. 2017;94:02012. https://doi.org/10.1051/matecconf/20179402012.
  • 42. Wang K, Kuroda M, Chen X, Hokamoto K, Li X, Zeng X, Nie S, Wang Y. Mechanical properties of explosion-welded titanium/duplex stainless steel under different energetic conditions. Metals.2022;12:1354. https://doi.org/10.3390/met12081354.
  • 43. Małek M, Wachowski M, Kosturek R. Research on microstructure and mechanical properties of explosively welded stainless steel/commercially pure Ti plate. Manuf Rev. 2019;6:28. https://doi.org/10.1051/mfreview/2019028.
  • 44. Zhao H. The microstructure and property of a titanium-carbon steel clad plate prepared using explosive welding. Metals. 2022;12:129. https://doi.org/10.3390/met12010129.
  • 45. Bi ZX, Li XJ, Yang K, Kai R, Wang Q, Xu MB, Zhang TZ, Dai XD, Qian JY, Wu Y. Experimental and numerical studies of titanium foil/steel explosively welded clad plate. Def Technol.2023;25:192–202.
  • 46. Mojżeszko M, Madej Ł. Capabilities and limitations of the simplified smoothed particle hydrodynamics explosive welding model. Arch Civ Mech Eng. 2024;24:37. https://doi.org/10.1007/s43452-023-00851-z.
  • 47. PN-EN ISO 20482:2014-2. Metallic materials-sheet and strip-erichsen cupping test. Warsaw, Poland: Polish Committee for Standardization; 2014.
  • 48. PN-EN ISO 7799:2002. Metallic materials-sheet and strip 3 mmthick or less-reverse bend test. Warsaw, Poland: Polish Committee for Standardization; 2002.
  • 49. ASTM B265–20a-Standard specification for titanium and titanium alloy strip, sheet, and plate, Apr 14, 2020.
  • 50. Li W, Yan L, Karnati S, Liou F, Newkirk J, Brown Taminger KM, Seufzer WJ. Ti-Fe intermetallics analysis and control in joining titanium alloy and stainless steel by laser metal deposition. JMater Process Tech. 2017;242:39–48. https://doi.org/10.1016/j.jmatprotec.2016.11.010.
  • 51. Motyka M, Nowak WJ, Wierzba B, Chrominski W. Characterization of the interface between α and β titanium alloys in the diffusion couple. Metall Mater Trans A. 2020;51:6584–91. https://doi.org/10.1007/s11661-020-06023-5.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e0ca8da9-f60f-44e5-ba78-a8b9315ef5a4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.