Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Czasopismo
Rocznik
Tom
Strony
24--27
Opis fizyczny
Bibliogr. 24 poz., fot.
Twórcy
autor
Bibliografia
- [1] Fink M. (2009), The Photonics Solutions Update, January, 28–31.
- [2] Thomsen M., Wu Z. L. (1997), Polarizing and reflective coatings based on half-wave layer pairs, „Appl. Opt.”, 36, 307–313.
- [3] Tang Ch.-J., Jaing Ch.-Ch., Tien Ch.-L., Sun W.-Ch., Lin S.-Ch. (2017), Optical, structural, and mechanical properties of silicon oxynitride films prepared by pulsed magnetron sputtering, „Appl. Opt.”, 56, 4 C168–C174.
- [4] Mazur M., Wojcieszak D., Kaczmarek D., Domaradzki J., Song S., Gibson D., Placido F., Mazur P., Kalisz M., Poniedziałek A., Functional photocatalytically active and scratch resistant antireflective coating based on TiO2 and SiO2, „Appl. Surface Sci.”, 380, (2016), 165–171.
- [5] http://iiviinfrared.com/Optical-Materials/optical-materials.
- [6] Lin Ch.-R., Chang H.-M., Chang Ch.-K. (2013), Fabrication of High Transparency Diamond-Like Carbon Film Coating on D263T Glass at Room Temperature as an Antireflection Layer, „International Journal of Photoenergy”, vol. 2013, 1–8, Article ID 612163.
- [7] www.edmundoptics.com/capabilities/manufacturing/optical-coatings/.
- [8] Chen D. (2001), Anti-reflection (AR) coatings made by sol–gel processes: A review, „Solar Energy Materials and Solar Cells”, 68, 3–4, 313–336.
- [9] Sai H., Fujii H., Arafune K., Ohshita Y., Kanamori Y., Yugami H., Yamaguchi M. (2007), Wide-angle antireflection effect of subwavelength structures for solar cells, „Jpn. J. Appl. Phys.”46, 6A, 3333–3336.
- [10] Schulz U., Rickelt F., Ludwig H., Munzert P., Kaiser N. (2015), Gradient index antireflection coatings on glass containing plasma-etched organic layers, „Opt. Mater. Express”, 5, 6, 1259–1265.
- [11] Boden S. A., Bagnall D. M. (2010), Optimization of moth-eye antireflection schemes for silicon solar cells, „Prog. Photovolt. Res. Appl.”, 18, 3, 195–203.
- [12] Zada I., Zhang W., Li Y., Sun P., Cai N., Gu J., Liu Q., Su H., Zhang D. (2016), Angle dependent antireflection property of TiO2 inspired by cicada wings, „Appl. Phys Lett.”, 109, 15 3701, DOI: 10.1063/1.4962903.
- [13] Lin Ch., Huang N., Povinelli M. L. (2012), Effect of aperiodicity on the broadband reflection of silicon nanorod structures for photovoltaics, „Opt. Express”, 20, 1, A125–A132.
- [14] http://www.eu.en.sunguardglass.com/Products/AdvancedSolutions/GuardianClarity/index.htm.
- [15] Guardian Clarity(TM) - Anti-reflective glass in architectural applications ©2016 Guardian Industries Corp. (web_075314.pdf).
- [16] http://www.guardianinglass.fr/cs/groups/guardianeurope/documents/document/pro_058107.pdf.
- [17] http://ememento.saint-gobain-glass.com/app/webroot/img/assets/46/products/dnd/46_1394552602_1.pdf.
- [18] Planibel_clearsight_2016.pdf (broszura).
- [19] AGC // Planibel Clearsight – Processing Guide – V. 1.0 – October 2015 (broszura).
- [20] Pilkington_OptiView_and_OptiView_OW_Brochure_2015.pdf.
- [21] http://www.us.schott.com/architecture/english/products/anti-reflective-glass/amiran.html.
- [22] http://www.glas-co.at/produkte/schott/schottmirogard/index.html.
- [23] schott-processed-glass-conturan-brochure-engnov-2016.
- [24] http://www.daglass.pl/.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e0c859f8-9429-4cad-b93b-35ea4bc11deb