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Abstract. This work examines with the form of the well-known sum: p + q = 1 – which 

is the sum of the probabilities of opposite events, in particular: the sum of the probabilities 

of the operational and non-operational (failure) states of a single element  

(a creation characterised by one output and any number of inputs). It was found that 

without significantly compromising the accuracy of the previous analyses, it was possible 

to introduce an additional component to the sum: iiipq3, a component that embodies the 

probability of an intermediate state, or a reduced operational state. With a constant value 

of the sum of the components in question, their variation as a function of probability  

q was determined, following which in the function of the same variable the variation of 

the entropy of an element's i state was examined using Chapman–Kolmogorov equations; 

here the focus was on investigating the intensity of the transition from the operational 

state to the non-operational state or an intermediate state, and from an intermediate state 

to the non-operational state. 
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The meaning of intermediate probability was also referenced to the object: its 

diagnostic program, the entropy of structure, the full set of discriminable states, and the 

relevant transition intensities. It became indispensable in this respect to describe the 

object using the language of graph theory, in which the basic concepts are layers and an 

availability matrix. It should be noted that the subject object is an entity that comprises  

a set of individual elements, with a number and structure of connections that are consistent 

with the purpose of this entity. 

Keywords: intermediate state, object element, element of the set of states, intensity, full 

set, entropy, credibility, diagnostic program 

 

1. INTRODUCTION 

 
Life constantly creates situations where it is necessary to make a decision 

with more than two options. Some of the most glaring examples include: health  – 

illness – death; operational – intermediate – failure (non-operational); beauty – 

mediocrity – ugliness; very good – sufficient – insufficient; green – orange – red. 

In the case of technical diagnostics, a need for a decision arises when  

a component loses its properties gradually; where qualifying the result of  

a check as positive or negative poses serious problems. The imagination can then 

suggest a scale of the negative consequences of a false positive, or a false 

negative, all I and II type errors respectively. 

With so much need to distinguish an intermediate state, or a reduced 

operational state, it is regrettable that there is no simple and intuitively 

understandable method to assess its significance, the probability of its occurrence. 

Why not change it? Why not, without any particular formalism or confusion, 

expand the well-known sum of probabilities of the operational and the non-

operational states: p + q = 1, with an additional component, iiipq3, which 

identifies the probability of an intermediate or reduced operational state in 

question? 

It is hoped that the results of the analyses of the following equation: 

iiip + iiipq3 +q =1 (1) 

will provide an answer to this question. 

By deriving the following to the left of the equal sign: 
 

iiip= 
q

q

31

1




 (2) 

 

it can be expressed as a function of one variable: 
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The left-hand side superscript with a Roman numeral is to enhance the 

distinctness of the operational state probability, p, for the three- and five-value 

qualifiers of the state of an element. The probability of failure, q, is not subject to 

such a distinction. 

In this paper, the term intermediate state is similar to the concepts known 

from reference literature, such as reduced operational state, fuzzy strategy and 

uncertainty, as preferred by, inter alia, the authors of the following works:  

[5, 8], [18] and [19] respectively. It could be stated that the three-state division of 

an element can correspond to any situation in which the model of research 

becomes a three-state graph, as found in [1, 9, 16, 20]. A three-state division may 

suggest the need to adapt three-valued logic. However, it has not been adapted 

here, due to the considered concept of object diagnostics. It has been believed 

that the object should undergo “strict” research programs in this respect, 

beginning with its input elements and ending with its output elements. This 

requires a full understanding of the constructional structure of the object. It is 

difficult to be indifferent to the contemporary challenges posed by Industry 4.0 

and its concomitant concept, prediction [21, 22]. Therefore, can an understanding 

of the probability of an intermediate state be ignored by Industry 4.0? 

  

2. PROBABILISTIC PROPERTIES OF AN ELEMENT 

 
An element (entity), whether for technical or administrative, organisational 

or any other reasons, is understood here as an indivisible creation with any 

internal structure, characterised by any number of inputs and only one output. 

The components of the element are its physical components. Any single-input 

component can be an element. The component could be a wire or a radio receiver. 

Because of its components, an element can have any structure (serial, parallel 

bridged, etc.) to ensure reliability. 

It is possible to determine the intermediate state or the non-operational state 

of a specific element if all its input signals are acceptable and its output signal1 is 

either unacceptable or partially unacceptable. If present, any unacceptable or 

partially unacceptable input signal can make the output signal of the element 

unacceptable or partially unacceptable and obscures that element’s diagnostic 

state2 [14]. 

 

 

                                                 
1 Any measurable quantity that allows one of the distinguishable diagnostic states of an element (entity) to be 

determined. 
2 The concept of “diagnostic state” is synonymous here with the term of “reliability state”, which could equally 

well mean the “operational state”, the “non-operational state” or an “intermediate state”. The reference 
literature terms the concept of “reliability state” as a “malfunction state”. It is thought that introducing the 

concept of “diagnostic state” will stop any lexical discussions.  
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2.1. Variability of probabilities of the particular states 

 
Equation (1) expresses the natural consequence of introducing an 

intermediate state; firstly, by placing the value of its probability between the 

probabilities of the operational and the non-operational states, and secondly by 

indicating its significance as three times the product of probabilities of both states. 

Multiplying by three triplets is not incidental here – it leads to the intersection of 

all the components of equation (1) as a single point. 

Equation (3) succinctly describes the variation of each of the components as 

a function of one variable, or the non-operational state probability, q. From the 

analysis of the variation of the components (Fig. 1), it can be concluded that the 

components reach a common point (and therefore an identical value equal to 1/3) 

for q = 1/3. It is significant and intuitively understandable that if q = 0 and q = 1, 

the value of iiip (Fig. 1, solid green line) gives the values of 1 and 0 respectively. 

This is compatible with a binary (zero-one) state assessment. 
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Fig. 1. Graphs of probability variations of the states: operational rz, intermediate rp 

and non-operational rn, expressed by the sum (3) and respectively (in Fig. 1) by solid 

lines in green, orange and red 

 

2.2. Entropy of state 

 
Entropy H, in relation to the subject of this work, expresses the degree of 

ignorance about the dependability (reliability) of the functioning of an element, 

or the unpredictability of the performance of the task assigned to the element.  
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A study of the variability of the function of entropy (according to Shannon’s 

formula) [10]: 

nnppzz rrrrrrH 333 logloglog   (4) 

with:  

q

q
pr iii
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distinguishes between two zero values and a maximum value in between (Fig. 2) 

each time. 
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Fig. 2. The entropy of the state of an element with its three-valued assessment as  

a function of the non-operational state probability q (solid blue line), together with its 

components (solid green, orange and red lines) relating to the probabilities expressed 

respectively by the equations: (5), (6) and (7) 

 

The first of the zeros (to the left of the maximum value) characterises an 

operational (fully serviceable) component, which deserves full confidence. The 

second zero, on the contrary, characterises an element as completely non-

operational and devoid of performance capabilities. It should be noted that in both 

cases the question of the use of the element is predetermined.  



 P. Szczepański 76 

 

The maximum value, which expresses the highest uncertainty, from  

a practical point of view expresses the average number of checks necessary to 

determine the diagnostic state of the component. For a single element this is  

1 and refers to an equal probability of q = 1/3 for each state. 

The logarithm base equal to 3 applies to three potential outcomes of this 

check, for example, yes, no, difficult to say or: good, bad, “so-so” or: operational, 

partially operational, non-operational; or: ... . For a three-valued state 

assessment, the unit of entropy is called the ‘trit’ (trenary digit). In other words, 

it can be stated the trit is a unit of information quantity that equals to the amount 

of the information obtained by realising one of three equally probable states. 

 

2.3. Interstate transition intensities 

 

The intensity of transition from state x to state y: xy, is in other words an 

assessment of the increase or decrease in the rate of this transition. In this work, 

the transitions assessed are those highlighted in graphs G1, G2 and G3 (Table 1). 

The relevant calculations were based on probabilities rz (5), rp (6) and rn (7), the 

derivatives of these probabilities, namely r'z (8), r'p (9) and r'n (10), and the 

corresponding systems of Chapman–Kolmogorov equations (Table 1). 
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The derivatives (8), (9) and (10) express the rate of change of the 

probabilities rz, rp and rn with respect to their argument, the probability of an 

element’s non-operational state, q. Each time (for each value of q): 

0'''  npz rrr  (11) 

This property is illustrated in Fig. 3. Note also that the sum of the derivatives 

of functions is the derivative of the functions’ sum. According to relation (3), the 

latter is equal to 1, therefore its derivative is equal to 0. 
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The zero values of the sums of the derivatives can also confirm the zero 

values of the sums of the right-hand sides of the systems of Chapman–

Kolmogorov equations, which in turn can also confirm their correctness  

(Table 1). 
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Fig. 3. Variation of the derivatives: r'z, r'p and r'n as a function of the non-operational 

state probability q 

 

The variability of zp1 seems to contradict the common perception of 

intensity values greater than zero. It is worth noting its relationship with the 

decrease in the values of rp values q>1/3. 

The nature of the changes in individual intensities was determined by the 

directions of transition assigned to them. Care was taken to ensure that they were 

in keeping with the natural essence of things. Therefore, from this point of view, 

there should be no doubt about the introduction of intensity  in graph G2, from 

the intermediate state to the operational state, along the lines of life concepts: 

from illness to health. It was decided to test its relevance as well as the 

advisability of introducing the intensity in [9, 15, 16, 17]. Comparisons of the 

solutions of the equation systems for graphs G2 and G3 showed no differences; 

the intensity  was zero, and intensities zp2zp3 and pn2 pn3 were equal to 

each other. In [9], the need for an intermediate state was noted for a battery-

charger power supply, while in [16] it was noted for the flight of an aircraft. 

Of particular note is the 'bathtub' variation in intensity: 
 

zp2zp3 = zn1zp1 (12) 
 

There might be the impression that these intensities mathematically confirm 

the research results known in this context [4]. Attention is drawn to an analysis 

of the graph shown in [1]. 
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Table 1. Examples of determination of interstate crossing intensities xy for three-vertex  

                   state graphs 

State graph 
Chapman– Kolmogorov  

equations 

Transition intensity 

xy 

Variation 
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2.4. Credibility of state assessment 

 
In speaking about credibility, one can mean the quality of the attestation of 

a given state by its evaluation. By assigning to the state and the assessment, 

respectively, the probabilities of occurrence r and accuracy s, it can be said that 

truth and falsehood are defined by probabilities rs and (1 - r)(1 - s), respectively, 

and credibility is defined by this relationship:  

  srrs

rs
W




11
 (13) 
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Figure 4 shows the credibility of the attestation of the operational, 

intermediate, and non-operational states as a function of the probabilities of their 

occurrence, rz (5), rp (6) and rn (7) and the reliability (accuracy) s of their 

assessment. The accuracy is influenced by the quality of the research process and 

the accuracy of the control and measurement instruments. 
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Fig. 4. The credibility of the attestation of the operational, intermediate, and non-

operational states as a function of the probabilities of the states’ occurrence and 

reliability (accuracy) of the states’ assessment 

 
In order to determine the trend of changes in credibility as a function of the 

reliability considered, an analysis of these changes was undertaken for two of its 

values: s95 = 0.95 and s90 = 0.90. The result is shown in Fig. 5. 
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Fig. 5. Variation of the credibility of the attestation of the operational (z), 

intermediate (p) and non-operational (n) as a function of probability q and 

probabilities s90 and s95, equal to, respectively: 0.90 and 0.95 
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Full credibility occurs when either of the probabilities r or s is equal to unity, 

and at the same time is greater than zero. In reality, although it is striven for, none 

of these probabilities reaches the 100% ceiling. 

The trend analysis (Fig. 5) suggests that the operational and non-operational 

states can be determined with the highest reliability, while the intermediate state 

can be determined with the lowest reliability, where the maximum is found for 

q=0.33 (3). 

In order to establish the operational state, it is advisable to set very high 

requirements for the element, narrowing the tolerances of its parameters. 

 

2.5. Five-value qualification of element state 

 
The five-value qualification can be discussed in the context of school grades, 

excellent, very good, good, satisfactory and unsatisfactory, but in comparison to 

the content of this paper, it is prudent to determine the intermediate probabilities 

to the intermediate state probabilities (Fig. 6a, turquoise and pink chart lines). 

This is another interference in the relation defined by equation (1) and expressed 

as follows: 

vp + 25q vp2 + 5 vpq + 25 vpq2 + q = 1 (14) 

Moving probability vp to the left of the equality sign: 

q

qqqqqq
pv

50

1525111025250625 2234 
  (15) 

gives rise to the need to determine and present the variation of the five 

components of equation (14) as a function of the non-functional state probability 

q (Fig. 6).  

Somewhat as a consequence, the entropy variation was also determined  

(Fig. 7) not unlike as shown in Fig. 2. The logarithm base for each component of 

relation (14) is ‘5’, equal to the line count. Fivt is the name of a unit which was 

adopted here and is similar to the bit and trit, that are well known in the reference 

literature and correspond to bases ‘2’ and ‘3’ respectively. 
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Fig. 6. Probabilities of intermediate states (turquoise and pink lines) to the 

intermediate state (orange line) and the extreme states (green and red lines) 
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Fig. 7. The entropy of an element’s state at its five-value evaluation as a function of 

probability q, including its components (solid green, turquoise, orange, pink, and red 

lines) 
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3. PROBABILISTIC PROPERTIES OF AN OBJECT 

 
An object is an entity divisible into elements; it does not necessarily have 

 a single output, and, like the elements, it does not have a reliability structure. The 

elements of an object need not be accessible3 or real4. There are relationships 

between the elements of an object: dependence, independence  

and interdependence. 

 

3.1. Probabilities of distinguishable diagnostic states 

 
A determination of the particular probabilities of the distinguishable 

diagnostic states of an object must be preceded by an understanding of its 

constructional structure (a schematic diagram, a functional flowchart, technical 

documentation, etc.) with a determination of the number of the object’s elements 

and identification of the interrelations between these elements. 

In a rather truncated version, the language of graph theory can be used to 

state that the output of this identification is digraph D together with binary 

availability matrix D(D) [7]. 

Figure 8 is a form of “pictorial writing” illustrating an algorithm for 

processing a connection of three wires. 

The binary availability matrix D(D) indicates with ones in its rows and 

columns all successors and predecessors of each vertex, the sets of which are 

called transitive  ieF


 closures and antitransitive  ieF


 closures, respectively 

[11]. For example, for digraph D in Fig. 8: 

   3211 e,e,ee F


 
(16) 

whereas: 

   133 e,ee F


 (17) 

The availability matrix D(D) had (by virtue of the following procedure) to 

assume the form of an upper triangular matrix by introducing the numbering of 

rows and columns consistent with the numbering of the vertices in the successive 

layers of digraph D. The first layer includes those vertices that have no 

predecessors. Layer two included vertices which would not have any 

predecessors with the layer one vertices removed from the digraph. Layer three 

and each successive layer included the vertices which would not have any 

predecessors with the preceding layers removed from the digraph.  

 

                                                 
3 Inaccessible elements describe the structure of multi-output creations, e.g., integrated circuits, modules, relays, 

etc. 
4 It is a reference to hazard-protection pairs [12]. 



Probability of an Intermediate (Reduced Operational) State 83 

 

Digraph D has two layers:  

 1e1W  (18) 

 32 ee ,2 W  (19) 

A translation of the availability matrix D(D) for the determination of the size 

and probabilities of diagnostic states is, in essence, a translation of the reliability 

diagnostics. This matrix is a description of the diagnostic structure of the object, 

so its symbols in each column can be assigned to the results of the checks5. If any 

of the parameters of a signal exceeded its limit, the check result is a failure. 

Otherwise, the check result is a pass. Both results have logical values assigned as 

follows: 1 and 0. The distribution of zeros and ones in the ith line identifies the 

non-operational state of the ith element. 

With a three-valued assessment of element states, the argument above 

requires some modification. If the aim is to determine the full set of 

distinguishable states, the operational state of all elements and (in addition to the 

states resulting from single non-operational instances and intermediate 

instances) the states resulting from multiple non-operational and intermediate 

instances must be considered (Fig. 8d). 

In the upper triangular availability matrix D(D), the diagonal should be 

noticed first of all. Its ones should be assigned the symbolism of the intermediate 

state (p) and the non-operational state (n), and for this reason it needs to be 

duplicated (see the arrows in Fig. 8). By convention, the two symbols are shown 

in orange and red, respectively (see sub-matrices a and b enclosed by brackets). 

The D(D) ones (to the right of the diagonal) embody the obscurity of diagnostic 

states and sums (1) and (3). The obscurity of the states refers to the elements 

defined by the vertical coordinates of said ones. The zeros to the right of the 

diagonal also have their own distinct meaning. Their two coordinates indicate the 

states that can be identified simultaneously, or the elements that operate 

independently of one another. The distribution of symbols in a row is then the 

result of summing the rows which have the numbers of these elements assigned 

(see the rows marked with orange and red numbers: 2 and 3; bracket c). The 

number of possible states is 33=27, but there are only 11 distinguishable states. 

The probabilities of the individual states of an object ri are the products of 

the probabilities of the states of the individual elements, or the probabilities, 

which are the projections of the symbols contained in the individual rows. The 

projections z, p and n are the probabilities rz (5), rp (6) and rn (7) respectively. 

The ones (the symbols of obscurity) are left with their own values.  

Indexing is only done for the heterogeneous properties of elements. The 

indices then follow the vertical coordinates of the projected symbols. 

                                                 
5 Check – an operation to examine the conformity of an output signal to a standard. 



 P. Szczepański 84 

 

A test of the correctness of the performed operations can be the sum of the 

probabilities of individual distinguishable diagnostic states of the object (Fig. 8g), 

which is equal to 1. 
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Fig. 8. Illustration of the process of determining the full set of distinguishable 

diagnostic states of an object and the determination of probabilities of the occurrence 

of the states: (a) a schematic diagram of the object; (b) digraph, the object’s model; 

(c) the availability matrix describing the digraph; (d) the algorithm for determination 

of the full set of distinguishable diagnostic states (see details in the text); (e) and (f) 

are the probabilities of particular states with non-uniform and homogeneous 

probabilities of the diagnostic states of particular elements of the object; (g) the test 

of the sum of particular probabilities with non-uniform probabilities of diagnostic 

states of particular elements of the object 

 

 

The sum of the probabilities determined as above is always equal to 1. This 

happens irrespectively of digraph D, whatever the number of its vertices and the 

structure of vertex connections are.  
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Additionally, the probabilities which occur as specific factors and satisfying 

the following relation: rz + rp + rn = 1, in order to obtain the value of this sum, 

may take any value, of any character of their changes and of any relation to each 

other. In this paper, the probability values naturally assume only the values in the 

interval of <0; 1>. 

For standardised values of probabilities rz, rp and rn, probabilities ri assume 

the forms as shown in Fig. 8f and which greatly simplify further analysis. The 

implication of this simplification is, among other things, to study the variation of 

probabilities ri as a function of probability q (Fig. 9) 

a = (rn + 2 rz
2 rn +  rz rn

2)          (20) 

b = (rp + 2 rz
2 rp + rz rp

2)   (21) 

c=2 rz rn rp (22) 
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Fig. 9. Variation of probabilities ri with homogeneous properties of the elements as  

a function of probability q, with: 
 

No. Designation Value 

0 ok → rok = rz
3 

1 1 → r1 = rn 

2 I → rI = rp 

3, 5 2+3 → r2+r3 = 2rz
2rn 

4, 6 II+III → rII+rIII = 2rz
2rp 

9, 10 
2, III 

II, 3 
→ r2, III + rII, 3 = 2rzrnrp 

7 2, 3 → r2, 3 = rzrn
2 

8 II, III → rII, III = rzrp
2 
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Only two probabilities (rows 0 and 1)6 achieve a full span of the values from 

1 to 0 and from 0 to 1, respectively. For this reason, the other probabilities reach 

lower values. It must be known that the sum of all eight7 ordinates, for any value 

of the abscissa q, is equal to unity. In addition to this sum, the noteworthy sums 

of the probabilities are in brackets a, b and c (Fig. 8), which respectively 

determine the need to undertake replacement (20), prevention (21) and 

simultaneous replacement and prevention (22). 

Usually the cost of prevention is much lower than the cost of replacement. 

Figure 10 shows the variation of the probabilities, expressed in brackets, in the 

relationships (20) and (21). 
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0.33
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Fig. 10. Variation in the sum of the probabilities in brackets a, b and c in Fig. 11; the 

probabilities which determine the need for replacement (20), prevention (21), and 

simultaneous replacement and prevention (22) as a function of the non-operational 

state probability q 

 
The expression of the variations shown in Fig. 10 confirms the intuitively 

understandable sense of preventive maintenance. It is encouraging to see that with 

diagnostic tests for q < 1/3, the probability of “intermediate states” is higher than 

the probability of “non-operational states”. This usually translates into prevention 

which is faster than replacement and maintaining an object longer in the 

operational state of all its elements.  

                                                 
6 From here on, the rows will be identified by their numbers. 
7 In fact, there are eleven ordinates; however, due to the similarity of three of them, their doubled values are 

presented (compare Fig. 11 to Fig. 12). 
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The inflection of line b is at q ≈ 0.2. When this value is exceeded, the object’s 

user should be prompted to halt the operation of the object and commence 

appropriate refurbishment. 

 

3.2. Entropy of an object structure 

 
Once the probabilities of the individual diagnostic states have been 

determined, the determination of the entropy of the structure is a mere formality; 

not unlike in section 2.2, the Shannon formula should be applied. Figure 11 shows 

a chart of entropy variation for the object depicted Fig. 8.  
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Fig. 11. The entropy of the object structure (Fig. 8b) as a function of the non-

operational state probability q (solid blue line), together with its components, are 

summarised in the following table 
 

No. 
Ingredients 

H= 

0 -rz
3 log3 rz

3 + 

1 -rn log3 rn + 

2 -rp log3 rp + 

3+5 -2rz
2 rn log3 2 rz

2 rn + 

4+6 -2 rz
2 rp log3 2 rz

2 rp + 

9+10 -2 rz rn rp log3 2 rz rn rp + 

7 - rz rn
2 log3 rz rp

2 + 

8 - rz rp
2 log3 rz rp

2  
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The maximum of the entropy is at q ≈ 0.18, which for this q can mean the 

average number of checks needed to determine the state of the object [6]. 

Understanding the entropy of an object is very important – it guides the 

decision to undertake or abandon activities related to its operation on one hand 

and the decision to rationalise the cost of its research on the other hand. 

In line with the considerations made, it can be said that structure becomes 

key. Resources need to be distributed in a specific way when the structure is 

amorphous and the distribution is completely different when the structure is 

concentrated. An amorphous structure could be a bag of sweets, while  

a concentrated structure could be a mixture of blood tested for a dangerous virus. 

The former has the highest entropy, while the latter has the lowest entropy. 

The structures of objects are characterised not only by the intricacy of the 

interconnection of their elements, but also the vast number of elements, as is 

common nowadays. However, this does not prove to be particularly important. 

Describing the structure of an object using the language of graph theory 

allows the condensation of these elements, especially when the elements are 

deprived of access for measurement and monitoring or when they include 

feedback loops. Even with a personal computer, it should be noted that the 

number of interchangeable and available components is low. Billions of 

transistors and resistors are encapsulated in integrated circuits, which are housed 

in modules that are coated with lacquer and (usually) potted in resin. 

Over the years, it seems that a relentless, real challenge is the study of objects 

with distributed structures, that is, where there are no functional connections 

between the elements. Here the imagination suggests human society with its 

health problems. At present, a database of statistical results should make it 

possible to identify the optimal solution, especially as this database can be 

enhanced with the probabilities of the intermediate states. 

 

3.3. Transition intensities 

 
An object, according to the nature of things, can move from an operational 

state into one of its intermediate or non-operational states. Each time the states in 

question are mapped by the vertices of a two-layer graph. For the three wire 

connection in Fig. 11a the state graph takes the form shown in Fig. 12a. Next to 

it, Figure 12b shows the variation of the different transition intensities:   

3

z

i

i
r

dq

dr

 ; i{1, 2, 3, ..., 10} 
(23) 

as a function of probability q. The numbers i are written in circles, which in 

turn are written in ovals, symbolising the distinguishable diagnostic states of the 

object. 
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The dark green graph, numbered 0, refers to intensity:  
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

 
(24) 

Given the sum of transition rates for a full set of distinct diagnostic states is: 

0
10

1

0  
i

i  (25) 
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Fig. 12. (a) Graph of distinguishable reliability states of the object shown in Figs. 8a 

and 8b; (b) the variation of transition intensities as a function of probability q 
 

Consideration of the area of transition rate λ provides a clearer image of the 

object’s properties. The derivatives, which are measures of the rate of change of 

the values of the individual probabilities relative to changes in the unified 

probability of non-operational state of a single element, divided by probability 

rok, change very rapidly. 

As the probability approaches zero, the transition rate values spread 

asymptotically towards ±∞. This became the reason why the q values were 

restricted to the interval <0; 0.5>. The analysis of intensity variation should be 

carried out in parallel with the view of the variation of the probabilities shown in 

Fig. 9. Each increase and decrease in these probabilities should be associated 

with, respectively, a positive and negative intensity value.  

The intensity becomes greater with the difference between the probabilities 

of non-operational and intermediate states and the probability of operational 

state of all elements of the object. 
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3.4. Diagnostics with three-value assessment of check results8 
 

The diagnostics which identify intermediate states requires a specific testing 

procedure that does not have the traditional distinction between identifying and 

locating the non-operational instances, both of which were called serviceability 

checks and fault location. 

It makes no sense to examine the successors of an element in an intermediate 

state. It is difficult to assess their behaviour without understanding their 

sensitivities. It is also difficult to make any judgement about their condition in 

view of the known diagnostic phenomenon of non-operational instances 

obscuring other non-operational instances. The phenomenon of mutually 

compensating non-operational instances is also significant. Considering all of the 

foregoing, a natural consequence is to examine the object starting with the 

elements of the first layer and ending with those of the last layer. A formal 

notation of the method of this examination is Algorithm 1. 

A property of the algorithm is its particular simplicity. On the one hand, the 

simplicity is due to the possibility of directly using the upper triangular 

availability matrix D(D), and on the other hand, to the possibility of reaching an 

immediate diagnosis. The set of elements in non-operational or intermediate 

states is determined by the numbering of the checks with negative and or 

unresolved (not fully clear) results. The declaration of the operational state of all 

parts of an object can only be made once all the checks have been passed with 

positive results. 

Algorithm 1. Diagnostics with three-value assessment of check results 

1. Perform a check on the first row number in matrix D(D). 

2. (a) If the check is negative or intermediate, remove from the matrix D(D) the 

     rows and columns (except for the first row and the first column) defined  

     by the vertical coordinates defined by the coordinates of ones in the first 

     row. 

(b) If the check is positive, remove the first row and the first column from 

      matrix D(D). 

3. Repeat steps 1 and 2 until the dimension of matrix D(D) is not equal to zero. 

4. Determine the set of elements that are a non-operational or intermediate state 

according with this relationship: 

 

 

 

                                                 
8 An outline of the concept is included in the scientific communication: Paweł Szczepański: Application of 

three-value classification of element states in the diagnostics of engineering facilities. 30th Conference on 

Applications of Mathematics; Zakopane 2001 [13]. 
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with  

 𝑆𝑖
𝑛 , 𝑆𝑗

𝑝
 

 
respectively: negative and intermediate results of checks which by their 

numbering indicate the number of elements in a non-operational or intermediate 

state. 

Relation (26) can indicate more than one non-operational or intermediate 

instance. Their number depends on the structure of the object. For an object with 

a serial structure of connections, only one element with specific characteristics 

can be specified, while for an object with an amorphous structure of connections, 

where the elements operate independently of each other, more elements can be 

specified. 

The number of distinguishable object states of such a structure is many times 

greater than in a two-valued assessment of the state of elements. 

In diagnostics with three-valued assessment, the declaration of a non-

operational state or an intermediate state of a component is the result of an 

unacceptable or partially unacceptable output signal while the input signals are 

fully acceptable. At the same time, this means not testing an element’s output 

signal when at least one input signal is unacceptable or partially unacceptable. 
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Fig. 13. Conditional diagnostic programmes for the connection of three wires 

(Fig. 8a) with a three-valued assessment of the check results with (a)  

one and (b) two control and measurement entities 
 

Figure 13a shows a conditional program developed from Algorithm 1 for 

diagnosing the connection of three wires (Fig. 8a) with a three-valued assessment 

of the check results. 

The deltoids indicate the checks, the deltoid branches indicate the results of 

these checks, while the rectangles indicate the sets of non-operational or partially 

operational elements of the object.  
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The number – depending on whether it is inside a deltoid or a rectangle – 

indicates the check number or the element number, respectively. Each left-hand 

branch of the dendrite is assumed to indicate a negative check result, the middle 

branch indicates an intermediate check result, and the right-hand branch indicates 

a positive check result. The colours green, orange and red are associated with the 

operational, intermediate, and non-operational states, respectively. 

The test program presented is dedicated to single control and measurement 

entities, but it is easy to see that there is the possibility of parallel testing, or the 

simultaneous participation of two control and measurement entities (Fig. 13b). 

Thus, having found wire 1 to be operational, wires 2 and 3 can be tested. An 

economic analysis of the use of a parallel or sequential diagnostic process 

requires an estimation of its time and labour intensity (this estimation was not 

undertaken here). 

 

4. CONCLUSIONS 

 
The main theme of this paper is the analysis of the application of the 

properties of a full set of distinguishable diagnostic states of an object in the 

aspect of a three-valued assessment of the diagnostic states of the individual 

elements of the object. It was considered that a single element, in addition to 

being either in an operational or non-operational state, may also be in an 

intermediate state, which is the conjunction of the two former states. The 

probability value of this state (given by a function), together with the probabilities 

of the associated states (also given by functions) add up 1. The only argument of 

these functions is the non-operational state probability q of a single element, and 

a specific check for the correctness of the reasoning is the entropy value equal to 

one trit. 

The probabilistic properties of the elements of the full set of distinguishable 

diagnostic states depend on the constructional structure of the object. It is 

demonstrated that the relevance of the probability of any of the states of an object 

– resulting from either the non-operational state or the intermediate state of an 

element – is greater the smaller the power is of the antitransitive closure of that 

element. In other words, there is confirmation of the common sayings “the 

example comes from the top” or “a fish goes bad from the head”. The greater the 

number there is of elements of individual transitive closures, the smaller is the 

number of distinguishable diagnostic states. Only for an amorphous structure is 

it equal to 3n, with n being the number of elements of the object. 

By analogy, as is the case for a single element, the sum of all the probabilities 

of the individual states of an object is equal to unity. This is so regardless of  

the value of the argument of q. In this paper, this value is clearly in the interval 

<0; 1>. 
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The main theme of this paper is the presentation of an algorithm for 

diagnosing an object in terms of intermediate states of its individual elements. It 

can be stated with a great confidence that for a three-state classification of 

checking results, there is no more reasonable alternative to this algorithm. It is 

hoped that this statement will provide a sufficient reason to challenge the 

solutions presented in papers [2, 3, 5, 8]. Given the phenomenon of obscuring 

states and mutually compensating faults, an object should be diagnosed starting 

from the elements of the first layer. Positive results from all checks indicate that 

all elements of the object are operational. Here the traditional division of the 

diagnosis process into identification and location of non-operational instances 

does not apply. Insofar as it would be possible to speak of either of these activities 

at all, it would have to be said that the first should be the second. Depending on 

the constructional structure of the object, it was suggested it could be possible to 

indicate more than one non-operational or partially operational element. 

It was confirmed that the credibility of a diagnosis is higher the higher the 

probability is of the state determined by the diagnosis. 

An extensive arc of this work is the examination of transition intensities by 

application of Chapman-Kolmogorov equations. As a result of the analyses, the 

bathtub curve, which is known from the theory of reliability, has been 

externalized. Its analytical form can provide an impetus not only for broader 

research, but it can also confirm its present meaning. It is worth noting that 

transition intensities, contrary to the opinions of many contemporary researchers, 

are not always constant or positive quantities. Such discourse, though very 

necessary, requires a separate work. 
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Prawdopodobieństwo stanu pośredniego 
 

Paweł SZCZEPAŃSKI 
 

Wojskowa Akademia Techniczna 

ul. gen. Sylwestra Kaliskiego 2, 00-908 Warszawa,  

 
Streszczenie. W pracy zaingerowano w postać powszechnie znanej sumy: p + q = 1 sumy 

prawdopodobieństw zdarzeń przeciwnych, w tym zwłaszcza: sumy prawdopodobieństw 

stanów: zdatności i niezdatności pojedynczego elementu (tworu charakteryzującego się 

jednym wyjściem i dowolną liczbą wejść). Okazało się, że bez istotnego uszczerbku dla 

dokładności dotychczasowych analiz można wprowadzić do rzeczonej sumy dodatkowy 

składnik: iiipq3; składnik uosabiający tytułowe prawdopodobieństwo stanu pośredniego. 

Przy zachowaniu stałej wartości sumy rzeczonych składników określono ich zmienności 

w funkcji prawdopodobieństwa q, po czym w funkcji tej samej zmiennej zbadano 

zmienność entropii stanu elementu i z wykorzystaniem równań Chapmana 

–Kołmogorowa – intensywności przejść od stanu zdatności do stanów: niezdatności  

i pośredniego oraz: od stanu pośredniego do stanu niezdatności. Znaczenie 

prawdopodobieństwa pośredniego odniesiono także do obiektu: jego programu 

diagnozowania, entropii struktury, pełnego zbioru rozróżnialnych stanów, stosownych 

intensywności przejść. Nieodzowny stał się w tym względzie opis obiektu językiem teorii 

grafów, w którym: warstwy i macierz osiągalności są podstawowymi pojęciami. Należy 

zauważyć, że obiekt jest tworem stanowiącym zbiór pojedynczych elementów,  

o liczebności i strukturze połączeń zgodnej z przeznaczeniem tego tworu.  

Słowa kluczowe: stan pośredni, element obiektu, element zbioru stanów, intensywność, 

pełny zbiór, entropia, wiarygodność, program diagnozowania 
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