PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental investigations of elimination the stick-slip phenomenon in the presence of longitudinal tangential vibration

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article presents a scheme and description of the test stand as well as selected experimental results of the influence of longitudinal tangential vibrations on the stick-slip phenomenon. The tests were carried out at a constant forced vibration frequency f = 2000 Hz, as a function of the amplitude of the vibration velocity va. The position of the sliding body and the drive force necessary to make the body slip and maintain this motion were measured. The measurements were made in two successive stages. In the first stage, when the substrate on which the sliding occurred was stationary. In the second one, the substrate is in a vibrating motion in the direction parallel to the slip. The conducted experimental analyses have shown that longitudinal tangential vibrations can contribute to the reduction or even complete elimination of the stick-slip phenomenon.
Rocznik
Strony
45--50
Opis fizyczny
Bibliogr. 32 poz., rys., wykr.
Twórcy
autor
  • Department of Mechanical Engineering and Mechatronics, West Pomeranian University of Technology in Szczecin al. Piastów 19, 70-310 Szczecin, Poland
  • Department of Mechanical Engineering and Mechatronics, West Pomeranian University of Technology in Szczecin al. Piastów 19, 70-310 Szczecin, Poland
Bibliografia
  • 1. Abdo J., Tahat M., Abouelsoud A. (2009), The effect of excitation frequencies on stick-slip amplitude, 3rd International Conference on Integrity, Reliability and Failure, Porto/Portugal, 319-320.
  • 2. Abdo J., Tahat M., Abouelsoud A., Danish M. (2010), The effect of frequency of vibration and humidity on the stick-slip amplitude, International Journal of Mechanics and Materials in Design, 6(1), 45-51.
  • 3. Abdo J., Zaier R. (2012), A novel pin-on-disk machine for stick-slip measurements, Materials and Manufacturing Processes, 27, 751- 755.
  • 4. Canudas de Wit C., Olsson H., Aström K.J., Lischinsky P. (1995), A new model for control of system with frictio, IEEE Transactions on Automatic Control, 40(3), 419-425.
  • 5. F. Aarsnes U.J., Di Meglio F., Shor R.J. (2018), Avoiding stick slip vibrations in drilling through startup trajectory design, Journal of Process Control, 70, 24-35.
  • 6. Gao H., De Volder M., Cheng T., Bao G., Reynaerts D. (2016), A pneumatic actuator based on vibration friction reduction with bending longitudinal vibration mode, Sensors and Actuators A: Physical, 252, 112-119.
  • 7. Grudziński K., Warda B.J. (1993), A study of the influence of chosen tribological factors on the mixed friction characteristics and stick-slip vibrations, Archives of Mechanical Technology and Automation, 12, 499-514 (in Polish).
  • 8. Gutowski P., Leus M. (2012), The effect of longitudinal tangential vibrations on friction and driving forces in sliding motion, Tribology International, 55, 108-118.
  • 9. Gutowski P., Leus M. (2015), Computational model for friction force estimation in sliding motion at transverse tangential vibrations of elastic contact support. Tribology International, 90, 455-462.
  • 10. Kapelke S., Seemann W. (2018), On the effect of longitudinal vibrations on dry friction: Modelling aspects and experimental investigations, Tribology Letters, 66(3), 1-11.
  • 11. Kligerman Y., Varenberg M. (2014), Elimination of stick-slip motion in sliding of split or rough surface, Tribology Letters, 53(2), 395-399.
  • 12. Kröger M., Neubauer M., Popp K. (2008), Experimental investigation on the avoidance of self-excited vibrations, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 366(1866), 785-810.
  • 13. Leus M., Gutowski P. (2011), Practical possibilities of utilization of tangential longitudinal vibrations for controlling the friction force and reduction of drive force in sliding motion, Mechanics and Mechanical Engineering, 15(4), 103-113.
  • 14. Littmann W., Stork H., Wallaschek J. (2001a), Reduction of friction using piezoelectrically excited ultrasonic vibrations, Proceedings of the SPIE’s 8th Annual International Symposium on Smart Structures and Material, Billingham, Washington, 302-311.
  • 15. Littmann W., Stork H., Wallaschek J. (2001b), Sliding friction in the presence of ultrasonic oscillations: superposition of longitudinal oscillations. Archive of Applied Mechanics, 71, 549-54.
  • 16. Mfoumou G.S., Kenmoé G.D., Kofané T.C. (2019), Computational algorithms of time series for stick-slip dynamics and time-delayed feedback control of chaos for a class of discontinuous friction systems, Mechanical Systems and Signal Processing, 119, 399-419.
  • 17. Mokhtar M.O.A., Younes Y.K., El Mahdy T.H., Attia N.A. (1998), A theoretical and experimental study on dynamics of sliding bodies with dry conformal contacts, Wear, 218(2), 172-178.
  • 18. Neubauer M., Neuber C-C., Popp K. (2005), Control of stick-slip vibrations, Solid Mechanics and its Applications, 130, 223-232.
  • 19. Ozaki S., Hashiguchi K. (2010), Numerical analysis of stick-slip instability by a rate-dependent elastoplastic formulation for friction, Tribology International, 43, 2120-2133.
  • 20. Popov V.L., Starcevic J., Filippov, A.E. (2010), Influence of ultrasonic in-plane oscillations on static and sliding friction and intrinsic length scale of dry friction processes, Tribology Letters, 39(1), 25-30.
  • 21. Popp K., Rudolph M. (2003), Avoidance of stick-slip motion by vibration control, Proceedings in Applied Mathematics and Mechanics, 3, 120-121.
  • 22. Popp K., Rudolph M. (2004), Vibration control to avoid stick-slip motion, Journal of Vibration and Control, 10, 1585-1600.
  • 23. Qiu H., Yang J., Butt S. (2018), Investigation on bit stick-slip vibration with random friction coefficients, Journal of Petroleum Science and Engineering, 164, 127-139.
  • 24. Qu H., Zhou N., Guo W., Qu J. (2016), A model of friction reduction with in-plane high-frequency vibration, Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 230(8), 962-967.
  • 25. Rymuza Z. (1992), The stick-slip phenomenon, PAK, 12, 290-295, (in Polish).
  • 26. Tang L., Zhu X., Qian X., Shi C. (2017), Effects of weight on bit on torsional stick-slip vibration of oilwell drill string, Journal of Mechanical Science and Technology, 31(10), 4589-4597.
  • 27. Tang L., Zhu X., Shi C., Tang J., Xu D. (2015), Study of the influences of rotary table speed on stick-slip vibration of the drilling system Petroleum, 1(4), 382-387.
  • 28. Teidelt E., Starcevic J., Popov V.L. (2012), Influence of ultrasonic oscillation on static and sliding friction, Tribology Letters, 48(1), 51-62
  • 29. Wang P., Ni H., Wang R., Li Z., Wang Y. (2016), Experimental investigation of the effect of in-plane vibrations on friction for different materials, Tribology International, 99, 237-247.
  • 30. Wang P., Ni H., Wang R., Liu W., Lu S. (2017), Research on the mechanism of in-plane vibration on friction reduction, Materials, 10(9), 1-21.
  • 31. Zhu X., Tang L., Yang Q. (2014), A literature review of approaches for stick-slip vibration suppression in oilwell drillstring, Advances in Mechanical Engineering, 2014, 967952, 1-17.
  • 32. Zuleeg J. (2015), How to measure, prevent, and eliminate stick-slip and noise generation with lubricants, SAE Technical Paper 2015-01- 2259, 1-7.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e0c4068f-52a2-49de-a7d7-72daddd43f39
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.