PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Selected Methods of Modifying the Surface Layer of a Carbon Composite

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article presents the results of a comparative study on the modification of the surface layer of carbon composites. Fibre-reinforced polymer (FRP) composite materials are heterogeneous and anisotropic materials, characterised by high strength, low density, corrosion resistance along with ease of processing and moulding, and are increasingly replacing metal alloys. They are widely used in aviation, automotive and transport applications. One example of a modern composite is carbon fibre-reinforced polymer (CFRP). This study presents the influence of selected modifications of the surface layer of a CFRP composite on the values of free surface energy (SFE) and surface topography. The resulting SFE values were analysed together with the contribution of the polar SFE and dispersive SFE components. The article also presents the test results related to selected 3D surface roughness parameters and includes photographs of the test specimens after surface layer modification. The results were statistically processed in compliance with good research practice.
Twórcy
  • Lublin University of Technology, Faculty of Mechanical Engineering, Department of Production Engineering
  • Department of Manufacturing and Production Engineering, Rzeszow University of Technology
  • Department of Manufacturing and Production Engineering, Rzeszow University of Technology
  • Faculty of Power and Aeronautical Engineering, Warsaw University of Technology
  • Department of Manufacturing and Production Engineering, Rzeszow University of Technology
Bibliografia
  • 1. Wang Q., Hu Q., Qiu J., Pei C., Li X., Zhou H.:Using differential spread laser infrared thermography to detect delamination and impact damage in CFRP. Infrared Physics and Technology 2020, 106, 103282. doi.org/10.1016/j.infrared.2020.103282
  • 2. Wang H., Zhang C., Chen Y., Liu Z., Wang Y.,Hua L.: Study on adhesive-film bonded Al/CFRPjoints strengthened by ultrasonic vibration. Thin-Walled Structures 2023, 191, 111072. https://doi.org/10.1016/j.tws.2023.111072
  • 3. Zhang J., Lin G, Vaidya U., Wang H.: Past, present and future prospective of global carbon fibre composite developments and applications. Composites Part B 2023, 250, 110463. https://doi.org/10.1016/j.compositesb.2022.110463
  • 4. Bielawski R., Rządkowski W., Kowalik M.P.,Kłonica M.: Safety of Aircraft Structures in the Context of Composite Element Connection. International Review of Aerospace Engineering, 13(5).https://doi.org/10.15866/irease.v13i5.18805
  • 5. Sorrentino L., Parodo G., Turchetta S.: CFRP laser texturing to increase the adhesive bonding: morphological analysis of treated surfaces, The Journal of Adhesion, 2021, 97(14), 1322-1335, DOI:10.1080/00218464.2020.1758074
  • 6. Kweon J-H., Jung J-W., Kim T-H., Choi J-H., Kim D-H.: Failure of carbon composite to-aluminum joints with combined mechanical fastening and adhesive bonding. Compos Struct, 2006, 75, 192-198, https://doi.org/10.1016/j.compstruct.2006.04.013
  • 7. Robert M.J.: Mechanics of Composite Materials. Edition 2nd Edition First Published 1999 eBook Published 31 October 2018, Pub. Location Boca Raton Imprint, CRC Press. https://doi.org/10.1201/9781498711067
  • 8. Han G., Tan B., Cheng F., Wang B., Leong Y-K., Hu X.: CNT toughened aluminium and CFRP interface for strong adhesive bonding. Nano Materials Science 2022, 4, 266–275. https://doi.org/10.1016/j.nanoms.2021.09.003
  • 9. Yang G., Yang T., Yuan W., Du Y.: The influence of surface treatment on the tensile properties of carbon fiber-reinforced epoxy composites-bonded joints. Composites Part B: Engineering, 2019, 160, 446-456. https://doi.org/10.1016/j.compositesb.2018.12.095
  • 10. Gude M.R., Prolongo S.G., Ureña A.: Adhesive bonding of carbon fibre/epoxy laminates: Correlation between surface and mechanical properties. Surface and Coatings Technology, 2012, 207, 602-607. https://doi.org/10.1016/j.surfcoat.2012.07.085
  • 11. Kłonica M.: Analysis of the effect of selected factors on the strength of adhesive joints. IOP Conference Series: Materials Science and Engineering, 2018,393, 1. doi:10.1088/1757-899X/393/1/012041
  • 12. Hu Y., Yuan B., Cheng F., Hu X.: NaOH etching and resin pre-coating treatments for stronger adhesive bonding between CFRP and aluminium alloy. Composites Part B: Engineering, 2019, 178, 107478. https://doi.org/10.1016/j.compositesb.2019.107478
  • 13. De La Pierre S., Giglia V., Sangermano M., Cornillon L., Damiano O., Ferraris M.: Etching of carbon fiber-reinforced plastics to increase their joint strength. Journal of Materials Engineering and Performance, 2020, 29, 242–250. https://doi.org/10.1007/s11665-020-04576-5
  • 14. Zou X., Liu L., Chen T., Wu L., Chen K., Kong L., Wang M.: Laser surface treatment to enhance the adhesive bonding between steel and CFRP: Effect of laser spot overlapping and pulse fluence. Optics and Laser Technology, 2023, 159, 109002. https://doi.org/10.1016/j.optlastec.2022.109002
  • 15. Liu G., Xu Y., Yang W., Liu C.: Bonding repair of CFRP based on cold plasma treatment surface modification. Journal of Adhesion Science and Technology, 2020, 34, 16, 1796-1808. https://doi.org/10.1080/01694243.2020.1730663
  • 16. Veltrup, M., Lukasczyk, T., Mayer, B.: Effect of re-depositions and fiber exposure on the adhesive bond strength of CFRP after UV excimer laser treatment. Appl. Phys. A, 2022, 128, 786. https://doi.org/10.1007/s00339-022-05911-4
  • 17. Markuszewski D.: Detection and tracking damage in composite structures elements. Machine Dynamics Research, 2017, 40(4), 183-191.
  • 18. Kubit A., Zielecki W., Kaščák Ľ., Szawara P.: Experimental study of the impact of chamfer and fillet in the frontal edge of adherends on the fatigue properties of adhesive joints subjected to peel. Technologia i Automatyzacja Montażu (Assembly Techniques and Technologies), 2023, 119(1), 23-29. https://doi.org/10.7862/tiam.2023.1.3
  • 19. Zielecki W., and Ozga E.: Relationship between surface roughness and load capacity of adhesive joints made of aluminum alloy 2024-T3 after shot peening. Technologia i Automatyzacja Montażu (Assembly Techniques and Technologies), 2022, 118(4), 34-45. https://doi.org/10.7862/tiam.2022.4.4
  • 20. Zielecki W., Guźla E., Bielenda P.: The influence of natural seasoning on the load capacity of cylindrical adhesive joints. Technologia i Automatyzacja Montażu (Assembly Techniques and Technologies), 2012, 113(3), 15-24. Retrieved from https://journals.prz.edu.pl/tiam/article/view/91
  • 21. Kłonica M., Kuczmaszewski J., Samborski S.: Effect of a notch on impact resistance of the epidian 57/Z1 epoxy material after “Thermal Shock”. Solid State Phenomena, 2016, 240, 161–7. https://doi.org/10.4028/www.scientific.net/SSP.240.161
  • 22. Skoczylas J., Samborski, S., Kłonica M.: A multilateral study on the FRP Composite’s matrix strength and damage growth resistance. Composite Structures, 2021, 263, 113752. doi:10.1016/j.compstruct.2021.113752
  • 23. Markuszewski D.: Comparison of various types of damage symptoms in the task of diagnostics composite profiles. Diagnostyka, 2019, 20(3), 105-110. https://doi.org/10.29354/diag/111799
  • 24. Markuszewski D., Bielak M., Wądołowski M., Grzybek A.: Polymer-carbon composite supporting structure. Advances in Science and Technology Research Journal, 2022, 16(6), 244–250. https://doi.org/10.12913/22998624/156300
  • 25. Kowal M.: Effect of adhesive joint end shapes on the ultimate load-bearing capacity of carbon fibre-reinforced polymer/steel bonded joints. Advances in Science and Technology Research Journal, 2021, 15, 299–310. https://doi.org/10.12913/22998624/142370
  • 26. Belcher M., Blohowiak K., Wohl C., Lin Y., Connell J., Marcus A., Belcher T., Blohowiak K. Y.: Laser surface preparation of epoxy composites for secondary bonding: Optimization of ablation depth. Materials Science, Engineering, 2015.
  • 27. Palmieri F., Belcher M., Wohl C., Blohowiak K.,Connell J.: Supersonic retropulsion surface preparation of carbon fiber reinforced epoxy composites for adhesive bonding. Conference Paper, 2013.
  • 28. Akman E., Erdoğan Y., Bora M.Ö, Çoban O., Oztoprak B.G., Demir A.: Investigation of the differences between photochemical and photothermal laser ablation on the shear strength of CFRP/CFRP adhesive joints. International Journal of Adhesion and Adhesives, 2020, 98. https://doi.org/10.1016/j.ijadhadh.2020.102548
  • 29. Meng Q., Zhang X., Zhang K.: Femtosecond laser surface treatment of aerospace high modulus CFRP composites and its effect on surface wettability. Proc. SPIE 12757, 3rd International Conference on Laser, Optics, and Optoelectronic Technology LOPET 2023, https://doi.org/10.1117/12.2690370
  • 30. Palmieri F., Belcher M., Wohl C., Blohowiak K., Connell J.: Laser ablation surface preparation for adhesive bonding of carbon fiber reinforced epoxy composites. International Journal of Adhesion and Adhesives, 2016, 68, 95-101. https://doi.org/10.1016/j.ijadhadh.2016.02.007
  • 31. Wang F., Bu H., Ma W., Zhang P., Zhan X.: Influence of the different surface treatments on fracture property of CFRP adhesive joint. Journal of Adhesion Science and Technology, 2023, 37(6), 961-975. https://doi.org/10.1080/01694243.2022.2060785
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e0c2fa5b-5cd2-4702-afb3-665cee266b32
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.