PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this study was to develop a convenient method for superimposing SPECT images and EEG maps. This work was performed as part of research concerning feasibility of improving the localization of epileptic foci comparing to the standard SPECT examination by applying the technique of EEG mapping. The described method relies on making five EEG electrodes visible in SPECT images, calculating the coordinates of these electrodes in SPECT image space, approximating the coordinates of the remaining electrodes used in EEG recording and then computing a sequence of 3D EEG maps spanning on all the electrodes. An example of visualization of EEG and SPECT data integration was presented. The maximum error of the five base electrodes location was assessed below 10 mm. Assuming the exact placement of the base electrodes the accuracy of the proposed method was estimated below 5.5 mm.
Twórcy
autor
  • Nałęcz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, ul. Ks. Trojdena 4, 02-109 Warszawa, Poland
autor
  • Medical University of Warsaw, Department of Nuclear Medicine, Warsaw, Poland
  • Department of Neuroengineering, Nałęcz Institute of Biocybernetics and Biomedical Engineering PAS, Warsaw, Poland
autor
  • Department of Neuroengineering, Nałęcz Institute of Biocybernetics and Biomedical Engineering PAS, Warsaw, Poland
autor
  • Medical University of Warsaw, Department of Nuclear Medicine, Warsaw, Poland
Bibliografia
  • [1] Chang DJ, Zubal IG, Gottschalk C, Necochea A, Stokking R, Studholme C, et al. Comparison of statistical parametric mapping and SPECT difference imaging in patients with temporal lobe epilepsy. Epilepsia 2002; 43: 68–74.
  • [2] Knowlton RC, Lawn ND, Mountz JM, Kuzniecki RI. Ictal SPECT analysis in epilepsy: subtraction and statistical parametric mapping techniques. Neurology 2004; 63: 10–5.
  • [3] So EL. Integration of EEG, MRI, and SPECT in localizing the seizure focus for epilepsy surgery. Epilepsia 2000; 41 (Suppl. 3): S48–54.
  • [4] Zakun JJ, Bal C, Maes A, Tepmongkol S, Vazquez S, Dupont P, et al. Comparative analysis of MR imaging, ictal SPECT and EEG in temporal lobe epilepsy: a prospective IAEA multi-center study. Eur J Nucl Med Mol Imaging 2008; 35: 107–15.
  • [5] McNally KA, LeBron Paige A, Varghese G, Zhang H, Novotny EJ, Spencer SS, et al. Localizing value of ictal-interictal SPECT analyzed by SPM (ISAS). Epilepsia 2005; 46: 1450–64.
  • [6] O'Brien TJ, So EL, Mullan BP, Hauser MF, Brinkmann BH, Bohnen NI, et al. Subtraction ictal SPECT coregistered to MRI improves clinical usefulness of SPECT in localizing the surgical seizure focus. Neurology 1998; 50: 445–54.
  • [7] Zubal IG, Spencer SS, Imam K, Seibyl J, Smith EO, Wisniewski G, et al. Difference images calculated from ictal and interictal technetium-99m-HMPAO SPECT scans of epilepsy. J Nucl Med 1995; 36: 684–9.
  • [8] Kagadis GC, Delibasis KK, Matsopoulos GK, Mouravliansky NA, Asvestas PA, Nikiforidis GC. A comparative study of surface- and volume-based techniques for the automatic registration between CT and SPECT brain images. Med Phys 2002; 29: 201–13.
  • [9] Koessler L, Maillard L, Benhadid A, Vignal JP, Braun M, Vespignani H. Spatial localisation of EEG electrodes. Clin Neurophysiol 2007; 37: 97–102.
  • [10] Cointepas Y, Mangin JF, Garnero L, Poline JB, Benali H. BrainVISA: software platform for visualization and analysis of multi-modality brain data. Neuroimage 2001; 13: S98.
  • [11] Litvak V, Mattout J, Kiebel S, Phillips C, Henson R, Kilner J, et al. EEG and MEG data analysis in SPM8. Comput Intell Neurosci 2011; 2011. http://dx.doi.org/10.1155/2011/852961. Article ID 852961.
  • [12] Tadel F, Baillet S, Mosher JC, Pantazis D, Leahy RM. Brainstorm: a user-friendly application for MEG/EEG analysis. Comput Intell Neurosci 2011; 2011. http://dx.doi.org/10.1155/2011/879716. Article ID 879716.
  • [13] Jasper HH. The ten-twenty electrode system of the International Federation. Electroencephalogr Clin Neurophysiol 1958; 10: 371–5.
  • [14] de Munck JC, van Houdt PJ, Verdaasdonk RM, Pauly Ossenblok PW. A semi-automatic method to determine electrode positions and labels from gel artifacts in EEG/ fMRI-studies. Neuroimage 2012; 59: 399–403.
  • [15] Goszczyńska H, Królicki L, Bajera A, Zalewska E, Kowalczyk L, Walerjan P, et al. The procedure for SPECT and BEAM images adjustment. Pol J Med Phys Eng 2007; 13: 115–25.
  • [16] Papademetris X, Jackowski M, Rajeevan N, Constable RT, Staib LH. BioImageSuite: an integrated medical image of analysis suite. Section of Bioimaging Sciences, Dept. of Diagnostic Radiology, Yale School of Medicine; 2013, http://www.bioimagesuite.org [5.06.13].
  • [17] Kowalczyk L, Zalewska E. PW program – extension of the neuroscan system for extraction and analysis of cortical evoked potentials. Biocybernet Biomed Eng 2005; 25: 61–6.
  • [18] Chatrian GE, Lettich E, Nelson PL. Ten percent electrode system for topo-graphic studies of spontaneous and evoked EEG activity. Am J EEG Technol 1985; 25: 83–92.
  • [19] Shepard D. A two-dimensional interpolation function for irregularly-spaced data. In: Proceedings of the 1968 ACM 23rd National Conference, August 27–29; 1968. p. 517–24.
  • [20] Olver FWJ, Lozier DW, Boisvert RF, Clark CW, editors. NIST handbook of mathematical functions. New York, NY: Cambridge University Press; 2010 [charter 3, section 5, subsection ii].
  • [21] Oostenveld R, Praamstra P. The five percent electrode system for high-resolution EEG and ERP measurements. Clin Neurophysiol 2001; 112: 713–9.
  • [22] Oostenveld R, Praamstra P, Stegeman DF, van Oosterom A. Overlap of attention and movement-related activity in lateralized event-related brain potentials. Clin Neurophysiol 2001; 112: 477–84.
  • [23] http://www.fil.ion.ucl.ac.uk/spm/software/ [5.06.13].
  • [24] http://www.bic.mni.mcgill.ca/ServicesAtlases/ICBM152Lin [5.06.13].
  • [25] http://surfer.nmr.mgh.harvard.edu/ [5.06.13].
  • [26] Koessler L, Cecchin T, Caspary O, Benhadid A, Vespignani H, Maillard L. EEG-MRI co-registration and sensor labeling using a 3D laser scanner. Ann Biomed Eng 2011; 39: 983–95.
  • [27] Steinmetz H, Furst G, Meyer BU. Craniocerebral topography within the international 10-20 system. Electroencephalogr Clin Neurophysiol 1989; 72: 499–506.
  • [28] Rademacher J, Caviness Jr VS, Steinmetz H, Galaburda AM. Topographical variation of the human primary cortices: implications for neuroimaging, brain mapping, and neurobiology. Cereb Cortex 1993; 3(4): 313–29.
  • [29] Scheinost D, Teisseyre TZ, Distasio M, DeSalvo MN, Papademetris X, Blumenfeld H. New open-source ictal SPECT analysis method implemented in BioImage Suite. Epilepsia 2010; 51: 703–7.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e0c27695-1b9a-4e4d-b193-5e102060d759
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.