PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Morphology and Structure of the Erbium Stabilized Bismuth Oxide Thin Films Deposited by PLD Technique

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of the work was to obtain thin bismuth oxide films containing, at room temperature, the Bi1,5Er0,5O3 phase. This phase corresponds to the structure of the high-temperature δ-Bi2O3 phase, in pure bismuth oxide, characterized by the highest ionic conductivity of all known solid state ionic conductors. The high-temperature δ-Bi2O3 phase with the face centered cubic structure, in pure bismuth oxide, occurs only at temperature above 730°C. Stabilization of the δ-Bi2O3 phase at room temperature was achieved by an addition of the erbium together with the employ-ment of the Pulsed Laser Deposition (PLD) technique. The influence of an amount of Er alloying and the film thickness on surface morphology, microstructure, phase composition of thin films were investigated. The velocity of deposition of thin layers of bismuth stabilized with erbium in the PLD process using the Nd: YAG laser was about 0.5 nm/s.The investigation results of erbium doped bismuth oxide thin films deposited onto (0001) oriented Al2O3 monocrystalline substrate are presented. Thin films of uniform thickness, without cracks, and porosity were obtained. All deposited thin films (regardless of the film thickness or erbia (Er2O3) content) exhibited a columnar structure. In films stabilized with erbium, up to approx. 250 nm thickness, the columns have a diameter at the base from 25 to 75 nm. The columns densely and tightly fill the entire volume of the films. With increasing of the film thickness increases, porosity also significantly increases. In thin layers containing from 20 to 30 mole % Er2O3 the main identified phase at room temperature is Bi1,5Er0,5O3. It is similar to the defective fluorite-type structure, and belongs to the Fm-3m space group. This phase corresponds to the structure of the high-temperature δ-Bi2O3 phase in pure bismuth oxide.
Twórcy
autor
  • AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, Al. Mickiewicza 30, 30-059 Krakow, Poland
autor
  • AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, Al. Mickiewicza 30, 30-059 Krakow, Poland
autor
  • AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, Al. Mickiewicza 30, 30-059 Krakow, Poland
  • AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, Al. Mickiewicza 30, 30-059 Krakow, Poland
Bibliografia
  • [1] S. Sanna, V. Esposito, C. Mogens, P. Nini, APL Mater. 4, 121101_1-121101_5 (2016).
  • [2] T. Liu, Y. Zhao, L. Gao, J. Ni, Sci. Rep. 5, 9307-9314 (2015).
  • [3] Y. Li, M. A. Trujillo, E. Fu, B. Patterson, L. Fei, Y. Xu, S. Deng, S. Smirnov, H. Luo, Bismuth oxide: a new lithium-ion battery anode, J. Mater. Chem. A. 1, 12123-12127 (2013).
  • [4] E. D. Wachsman, K. T. Lee, Science, 334, 935-939 (2011).
  • [5] D. Shan, J. Zhang, H.-G. Xue, Y.-C. Zhang, S. Cosnier, S.-N. Ding, Biosens. Bioelectron. 24, 3671-3676(2009).
  • [6] Y. Qiu, D. Liu, J. Yang, S. Yang, Adv. Mater. 18, 2604-2608 (2006).
  • [7] N. Arora, G. Deo, I. E. Wachs, A. M. Hirt, J. Catal. 159, 1-13 (1996).
  • [8] W. K. Sakamoto, D.H.F. Kanda, C. L. Carvahlo, J. Mater. Sci. 19, 603-605 (2000).
  • [9] V. Fruth, M. Popa, D. Berger, R. Ramer, M. Gartner, A. Ciulei, M. Zaharescu, J. Eur. Ceram. Soc. 25, 2171-2174 (2005).
  • [10] K. Shimanoe, M. Suetsugu, N. Miura, N. Yamazoe, Solid State Ion. 113-115, 415-419 (1998).
  • [11] M. Mehring, Coord. Chem. Rev. 251, 974-1006 (2007).
  • [12] N. Cornei, N. Tancet, F. Abraham, O. Mentre, Inorg. Chem. 45, 4886-4888 (2006).
  • [13] A. C. Jones, P. L. Chalker, J. Phys. D 36, R80-R95 (2003).
  • [14] N. M. Sammes, G. A. Tompsett, H. Nafe, F. Aldinger, J. Eur. Ceram. Soc. 19, 1801-1826 (1999).
  • [15] P. Shuk, H.-D. Wiemhofer, U. Guth, W. Gopel, M. Greenblatt, Solid State Ion. 89, 179-196 (1996).
  • [16] S. Sanna, V. Esposito, C. Graves, J. Hjelm, J.W. Andreasen, N. Pryds, Solid State Ion. 266, 13-18 (2014).
  • [17] V. Fruth, A. Ianculescu, D. Berger, S. Preda, G. Voicu, E. Tenea, M. Popa, J. Eur. Ceram. Soc. 26, 3011-3016 (2006).
  • [18] C. D. Ling, R. L. Withers, S. Schmid, J. G. Thompson, J. Solid State Chem. 137, 42-61 (1998).
  • [19] T. Takahashi, H. Iwahara, Mater. Res. Bull. 13, 1447-1453 (1978).
  • [20] S. F. Radev, V. I. Simonov, Y. F. Cargin, Acta Crystallogr. B. 48, 604-609 (1992).
  • [21] T. P. Gujar, V. R. Shinde, C. D. Lokhande, R. S. Mane, S.-H. Han, App. Surf. Sci. 252, 2747-2751 (2006).
  • [22] O. Riko-Fuentes, E. Sanchez-Aguilera, C. Velasquez, R. Ortega-Alvarado, J. C. Alonso, A. Ortiz, Thin Solid Films 478, 96-102 (2005).
  • [23] L. Leontie, M. Caraman, M. Alexe, C. Harnagea, Surface Science, 507, 480-485 (2002).
  • [24] E. W. Bohannan, C. C. Jaynes, M. G. Shumsky, J. K. Barton, J. A. Switzer, Solid State Ion. 131, 97-107 (2000).
  • [25] A. Z. Adamyan, Z. N. Adamyan, V. M. Aroutiounian, Sens. Actuator B-Chem. 93, 416-421 (2003).
  • [26] M. Vehkamaki, T. Hatanpaa, M. Ritala, M. Leskela, J. Mater. Chem. 14, 3191-3197 (2004).
  • [27] L. Leonite, M. Caraman, A. Visinoiu, G. I. Rusu, Thin Solid Films, 473, 230-235 (2005).
  • [28] M. Le Thang, M. Kovanda, V. Myslik, M. Vrnata, I. Van Driessche, S. Hoste, Thin Solid Films, 497, 284-291 (2006).
  • [29] J.-W. Sun, L.-S. Kang, J.-S. Kim, M.-R. Joung, S. Nahm, T.-G. Seong, et al., Acta Materialia 59, 5434-5439 (2011).
  • [30] S. Kac, L. Cieniek: Inzynieria Materialowa 6, 568- 571 (2008).
  • [31] S. Kac, T. Moskalewicz; Inzynieria Materialowa 4, 295-298 (2013).
  • [32] S. Kac, L. Cieniek, T. Moskalewicz, Inzynieria Materialowa 36, 479-483 (2015).
  • [33] G. Szwachta, S. Kac, T. Moskalewicz, Surf. Coat. Techn. 30, 474-481 (2016).
  • [34] N. Jiang, E. D. Wachsman, J. Am. Ceram. Soc. 82, 3057-3064 (1999).
  • [35] S. Sanna, V. Esposito, J. W. Andreasen, J. Hjelm, W. Zhang, T. Kasama, S. B. Simonsen, M. Christensen, S. Linderoth, N. Pryds, Nature Materials 14, 500-504 (2015).
  • [36] M. J. Verkerk, K. Keizer, A. J. Burggraaf, J. Appl. Electrochem. 10, 81-88 (1980).
  • [37] H. Kruidhof, K. Seshan, G.M.H. van de Velde, K. J. de Vries, A. J. Burggraaf, Mater. Res. Bull. 23, 371-377 (1988).
  • [38] R. D. Shannon, Acta Crystallogr., Sect. A: Cryst. Phys. Diffr., Theor. Gen. Crystallogr. 32 (5) 751-67 (1976).
  • [39] S. J. Jeong, N. W. Kwak, P. Byeon, S.-Y. Chung, W. C. Jung, ACS Appl. Mater. Int. 10, 6269-6275 (2018).
Uwagi
EN
1. Financial support from National Science Centre under Grant Number 2011/03/B/ST8/05152 is highly appreciated.
PL
2. Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e0bfe819-c529-46bf-9521-4f224174639c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.