PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Conceptual principles of geospatial data geoinformation integration for administrative and economic management of transport infrastructure facilities

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the article publications have been analyzed and summarized on this topic: studied the experience of implementing building information models and geographic information models for administrative and economic management of transport infrastructure facilities on the example of the regional airport activity. After the stage of collecting geospatial data from various sources and sensors, the data is imported into CAD-systems or GIS-systems. Different software products are used to work with both of these models. The processes of data organization in the process of creating building information models and geographic information models differ to some extent. The issues of integration of such models are not yet fully addressed and need to be addressed. In the process of integration of spatial data, solutions to the integration of semantics, topology, formats and standards of geospatial data are needed. An important task is to develop and study the experience of creating software modules that allow you to integrate BIM-models into geographic information systems. Based on the research, it is established that the current area of research is the development of technologies that allow the generation of information from BIM and GIS to create a more interconnected infrastructure. The integration of BIM and GIS information to create a spatial data infrastructure (SDI) is a perspective direction.
Rocznik
Strony
art. no. e12, 2022
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
autor
  • National Aviation University, Kyiv, Ukraine
  • Kyiv National University of Construction and Architecture, Kyiv, Ukraine
  • Lviv Polytechnic National University, Lviv, Ukraine
  • Lviv Polytechnic National University, Lviv, Ukraine
Bibliografia
  • [1] Andrews, C. (2019). Myths and Realities of BIM-GIS Integration. Resources for geoengineering users. https://uk.geofumadas.com/%D0%9C%D1%96%D1%84%D0%B8-5-96%D1%97-5-97-bim-gis/.
  • [2] Boyko, O. (2018). Geoinformation Systems of ArcGis Airport Complexes. Urban Plan. Territor. Plan.: Sci. Tech. Proc., KNUCA, 68, 656–665.
  • [3] Boyko, O., Lyashenko, D. and Prusov, D. (2019a). Conceptual fundamentals of airport BIM/GIS spatial data integration received by laser scan. Journal of Chernihiv National University of Technology, 4(18), 238–246. (in Ukrainian).
  • [4] Boyko, O., Lyashenko, D., and Gorb, O. (2019b). Development of a conceptual model for the collection of geospatial data of airports by laser scanning methods for GIS creation. Urban Plan. Territor. Plan.: Sci. Tech. Collect., KNUCA, 71, 60–71.
  • [5] Chen,W., Yuan, J., and Li, M. (2012). Application of GIS/GPS in Shanghai Airport pavement management system. Procedia Eng., 29, 2322–2326. DOI: 10.1016/j.proeng.2012.01.308.
  • [6] Cherin, A. (2019). Ukrainian and international standards and specifications for the construction of modern GIS and geoportals. Retrieved 2021, from https://softpro.ua/ua/ukraiinski-ta-mijnarodni-standarti-ispecifikaciii-pobudovi-suchasnih-gis-ta-geoportaliv.
  • [7] Dasgupta, A. (2018). Integration of BIM and geospatial systems still a distant dream. Geospatial World Magazine. Retrieved 2021, from https://www.geospatialworld.net/article/integrat-ion-of-bim-andgeospatial-systems-still-a-distant-dream/.
  • [8] Esri and Perth Airport Website (2016). Perth International Airport in Australia. Enterprise-wide access to location-based data and analytics. ArcRev., 1(76).
  • [9] Eurasian Economic Union Member States (2019). The Analytical Report on the state of airport infrastructure, aerodrome equipment, air navigation and radio technical support for aircraft flights of the Eurasian Economic Union Member States. Retrieved 2021, from https://www.eurasiancommis sion.org/ru/act/energetikaiinfr/transport/air/Documents/Preview.pdf.
  • [10] Geoportal of the State Aviation Service of Ukraine (2020). Retrieved 2021, from https://avia.gov.ua.
  • [11] Geoportal of Boryspil International Airport (2021). ArcGIS magazine, 1(1), 34–37. Retrieved 2021, from https://ecomm.in.ua/sites/default/files/2021-10/arc-gs-chasopis_1.pdf.
  • [12] Gokhman, V.V. and Glebov, S.E. (2013). Airports around the World rely on the Power of GIS. ArcRev., 3(66).
  • [13] Harrie, L., Huang, W., Raza, S. et al. (2019). Assessment and benchmarking of spatially enabled RDF stores for the next generation of spatial data infrastructure. ISPRS Int. J. Geo.-Inf., 8, 310. DOI:10.3390/ijgi800310.
  • [14] Hartsfield-Jackson Airport Representatives (2016).World’s Largest Airport Flies High with GIS. ArcRev., 1(76). ICAO (2019). Annex 14 to the convention on international civil aviation, Volume I, Design and Operation ofAerodromes. Retrieved 2021, from: https://tdmegaprom.ru/uploads/images/ikao_prilozhenie-14_tom-1_aerodromy.pdf.
  • [15] Kuehne, D. and Andrews, C. (2016). Increasing interest in the fusion of GIS and BIM. Retrieved 2021, from Arcgis Blog of Esri https://www.esri.com/arcgis-blog/products/3d-gis/3d-gis/increasing-interest-inthe-fusion-of-gis-and-bim/.
  • [16] LAX Development Program Materials (2019). GIS as a Strategic Component of Extensive Modernization at LAX. ArcRev., 2(89).
  • [17] Mitchell, A. (2000). GIS Analysis Guide. Part 1: Spatial models and relationships. The Esri Guide to GIS Analysis, Second Edition.
  • [18] National Standard of Ukraine 742-33739540 0012 (2010). Complex of standards topographic database. Rules for encoding and digitally describing vector data, 2. Retrieved 2021, from http://gki.com.ua/ua/tehnichni-komitet-103.
  • [19] Order of the Headquarters of Geodesy, Cartography and Cadastre at the Cabinet of Ministers of Ukraine No. 56 (1998). Topographic Instruction in Scales 1:5000, 1:2000, 1:1000 and 1:500. Retrieved 2021, from https://zakon.rada.gov.ua/laws/show/z0393-98?lang=ru.
  • [20] Parrish, Ch., and Nowak, R. (2009). Improved Approach to Lidar Airport Obstruction Surveying Using Full-Waveform Data. J. Surv. Eng., 135(2). DOI: 10.1061/(ASCE)0733-9453(2009)135:2(72).
  • [21] Peters, J. (2018). Location Intelligence Saves Geneva Airport Millions. ArcRev., 3(86).
  • [22] Prusov, D. (2012). Numerical research of the retaining constructions during reconstruction of the transport structures. Transport, 27(4), 357–363. DOI: 10.3846/16484142.2012.750623.
  • [23] Prusov, D. (2014). The Concept of the Urban Areas Reconstruction Planning on the Basis of the Scientific and Engineering Substantiation. Proc. Nat. Aviat. Univ., 60(3), 54–58. DOI: 10.18372/2306-1472.60.7565.
  • [24] Resolution of the Cabinet of Ministers of Ukraine (2016). Resolution of the Cabinet of Ministers of Ukraine, No. 126. State target program for airport development for the period up to 2023. Retrieved 2021, from https://zakon.rada.gov.ua/laws/show/126-2016-%D0%BF.
  • [25] State Building Codes of Ukraine (2019). DBN B.2.2-12:2019. Planning and Development of Territories. Retrieved 2021, from https://dbn.co.ua/load/normativy/dbn/b_2_2_12/1-1-0-1802.
  • [26] Topographical-Geodetic and Cartographic Activity: Legislative and Regulatory Acts (2002). Part 2. Vinnytsia: Anteks 656 ps.
  • [27] Vladimirov, I. (2016). The main decisions to create a geographic information system of the airport. Retrieved 2021, Electronic Resource Esri from https://www.slideshare.net/IevgenVladimirov/esri-60108995.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e0bed246-aece-40b1-aecb-3df405366681
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.