Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This study performed a numerical investigation of the Soret and Dufour effects on unsteady free convective chemically reacting nanofluid flowing past a vertically moving porous plate in the presence of viscous dissipation and a heat source/sink. The equations direct-ing the flow are non-dimensionalised, modified to ordinary differential equations and emerging equations are resolved computationally by using the bvp4c function in MATLAB software. The results obtained from this analysis indicate that the resulting velocity of the nanofluid increases with increasing Grashof number, mass Grashof number and porosity parameter. An increase in the Dufour number increases the fluid temperature, whereas the concentration profile declines with the increase in the Schmidt number. It is also observed that the skin fric-tion coefficient, Nusselt number and Sherwood number increase with increasing magnetic field parameter, Eckert number and Schmidt number, respectively. The present study reveals the impact of Soret and Dufour effects on heat and mass transfer rates in chemically re-acting and viscous dissipating nanofluids.
Czasopismo
Rocznik
Tom
Strony
263--271
Opis fizyczny
Bibliogr. 23 poz., rys., tab., wykr.
Twórcy
autor
- Department of Mathematics and Statistics, Himachal Pradesh University, Summer Hill, Shimla-171005, India
autor
- Department of Mathematics and Statistics, Himachal Pradesh University, Summer Hill, Shimla-171005, India
Bibliografia
- 1. Gupta M, Singh V, Kumar R, Said Z. A review on thermophysical properties of nanofluids and heat transfer applications. Review Sust Energy Rev. 2021; 74: 638-670. https://doi.org/10.1016/j.rser
- 2. Turkyilmazoglu M, Pop I. Heat and mass transfer of unsteady natural convection flow of some nanofluids past a vertical infinite flat plate with radiation effect. International Journal of Heat and Mass Transfer. 2013; 59:pp. 167171.
- 3. Dalir N, Nourazar S S. Solution of the boundary layer flow of various nanofluids over a moving semi-infinite plate using HPM. Mechanika. 2014; 20: pp. 57-63.
- 4. Ghalambaz M, Noghrehabadi A, Ghanbarzadeh A. Natural convec-tion of nanofluids over a convectively heated vertical plate embedded in a porous medium. Brazilian Journal of Chemical Engineering. 2014; 31: 413-427.
- 5. Sulochana C, Samrat SP. Unsteady MHD Radiative flow of a Nano liquid past a permeable stretching sheet: An analytical study. Journal of Nanofluids. 2017; vol. 6: pp. 711-719.
- 6. Mishra A, Sharma BK. MHD Mixed Convection Flow in a Rotating Channel in the Presence of an Inclined Magnetic Field with the Hall Effect. Journal of Engineering Physics and Thermophysics 90, 2017; 1488–1499. https://doi.org/10.1007/s10891-017-1710-y.
- 7. Ashwinkumar GP , Sulochana C, Samrat SP .Effect of the aligned magnetic field on the boundary layer analysis of magnetic-nanofluid over a semi-infinite vertical plate with ferrous nanoparticles. Multidis-cipline Modeling in Materials and Structures. 2018; Vol. 14 No. 3: pp. 497-515. https://doi.org/10.1108/MMMS-10-2017-0128
- 8. Samrat SP, Sulochana, C, Ashwinkumar GP. Impact of Thermal Radiation on an Unsteady Casson Nanofluid Flow Over a Stretching Surface. International Journal of Applied and Computational Mathe-matics 5. 2019; 31. https://doi.org/10.1007/s40819-019-0606-2.
- 9. Shaw S, Motsa, SS, Sibanda P. Nanofluid flow over three different geometries under viscous dissipation and thermal radiation using the local linearization method. Heat Transfer-Asian Research, 2019; 48(3). doi:10.1002/htj.21497.
- 10. Kumar MA, Reddy YD, Goud BS, Rao VS. Effects of Soret, Dufour, hall current and rotation on MHD natural convective heat and mass transfer flow past an accelerated vertical plate through a porous me-dium. International Journal of Thermofluids. 2021; volume9: 100061.
- 11. Khan SA, Hayat T, Alsaedi A, Ahmad B. Melting heat transportation in radiative flow of nanomaterials with irreversibility analysis. Renew-able and Sustainable Energy Reviews. 2021; Volume 140: 110739 ISSN 1364-0321, https://doi.org/10.1016/j.rser.2021.110739.
- 12. Rasheed HUR, Islam S, Khan Z, Alharbi SO, Alotaibi H, Khan I. Impact of Nanofluid flow over an elongated moving surface with a uniform Hydromagnetic field and non-linear Heat reservoir. Hindawi Complexity. 2021; volume 2021: Article ID9951162.
- 13. Kumawat C, Sharma BK, M Al-Mdallal Q, Rahimi-Gorji M. Entropy generation for MHD two phase blood flow through a curved permea-ble artery having variable viscosity with heat and mass transfer. In-ternational Communications in Heat and Mass Transfer. 2022; Vol-ume 133: 105954, ISSN 0735-1933. https://doi.org/10.1016/j.icheatmasstransfer.2022.105954.
- 14. Tlili I, Baleanu D, Mohammad Sajadi S, Ghami F, Fagiry MA. Numer-ical and experimental analysis of temperature distribution and melt flow in fiber laser welding of Inconel 625. The International Journal of Advanced Manufacturing Technology. 2022; 121: 765–784. https://doi.org/10.1007/s00170-022-09329-3.
- 15. Hejazi HA, Ijaz Khan M, Raza A, Smida K, Khan SU and Tlili I. Inclined surface slip flow of nanoparticles with subject to mixed con-vection phenomenon: Fractional calculus applications. Journal of the Indian Chemical Society, 2022; Volume 99: Issue 7, 100564, ISSN 0019-4522. https://doi.org/10.1016/j.jics.2022.100564.
- 16. Anantha Kumar K, Sandeep N, Samrat SP, Ashwinkumar GP. Effect of electromagnetic induction on the heat transmission in engine oil-based hybrid nano and ferrofluids: A nanotechnology application. Proceedings of the Institution of Mechanical Engineers, Part E: Jour-nal of Process Mechanical Engineering. 2022;0(0). doi:10.1177/09544089221139569.
- 17. Veera Krishna M. Numerical investigation on steady natural convec-tive flow past a perpendicular wavy surface with heat absorp-tion/generation. International Communications in Heat and Mass Transfer. 2022; Volume 139: 106517, ISSN 0735-1933. https://doi.org/10.1016/j.icheatmasstransfer.2022.10657.
- 18. Khanduri U, Sharma BK. Hall and ion slip effects on hybrid nanopar-ticles (Au-GO/blood) flow through a catheterized stenosed artery with thrombosis. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 2022;0(0). doi:10.1177/09544062221136710.
- 19. Sharma BK, Gandhi R, Mishra NK, Al-Mdallal QM. Entropy genera-tion minimization of higher-order endothermic/exothermic chemical reaction with activation energy on MHD mixed convective flow over a stretching surface. Scientific Reports 12. 2022; 17688. https://doi.org/10.1038/s41598-022-22521-5.
- 20. Khanduri U, Sharma BK. Entropy Analysis for MHD Flow Subject to Temperature-Dependent Viscosity and Thermal Conductivity. In: Banerjee, S., Saha, A. (eds) Nonlinear Dynamics and Applications. Springer Proceedings in Complexity. Springer, Cham. 2022. https://doi.org/10.1007/978-3-030-99792-2_38.
- 21. Cramer KR, Pai SI. Magnetofluid Dynamics for Engineers and Ap-plied Physicists. McGraw-Hill, New York, 1973.
- 22. Das S, Jana RN. Natural convective magnetonanofluid flow and radiative heat transfer past a moving vertical plate. Alexandria Engi-neering Journal. 2015; 54:55–64.
- 23. Reddy PC, Raju MC, Raju GSS. Free Convective Heat and Mass Transfer Flow of Heat-Generating Nanofluid past a vertical moving porous plate in a Conducting field. Special Topics & Reviews in Po-rous Media – An International Journal. 2016;7(2): 161-180. 10.1615/SpecialTopicsRevPorousMedia.2016016973.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e0bdecf6-5d23-4f3d-b151-32c791bb383a