Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The natural wound healing process consists of four basic phases: homeostasis, inflammation, proliferation, and remodelling. Macrophages play an important role in the body’s response to biomaterials, as they are modulators of the wound healing process and can polarize into different phenotypes capable of inducing both deleterious and beneficial effects on tissue repair. Curcumin (CU) is known for its anti-inflammatory properties and has the potential to treat diabetic foot ulcers, but it should be delivered to wounds in a controlled manner. In this study, the encapsulation of curcumin in polymeric microparticles based on poly(sebacic anhydride) (PSA) was developed using an emulsification method. PSA-based microparticles containing different concentrations of CU were obtained: 0% weight (wt). CU (unloaded microparticles), 5, 10, and 20 wt% CU. CU encapsulation efficiency and loading were determined using a fluorescence-based calibration curve method and semi-quantitative Fourier-transform infrared spectroscopy (FTIR) analysis. The potential cytotoxicity of the obtained biomaterials in contact with primary human macrophages and their susceptibility to polarization from the M1 (pro-inflammatory) phenotype to the M2 (antiinflammatory) phenotype were evaluated. The morphology of cells cultured in contact with polymeric microparticles was evaluated using phalloidin red and 4′,6-diamidino2-phenylindole (DAPI) staining. Macrophage phenotype was assessed using flow cytometry. The obtained biomaterials showed no cytotoxic effect on primary human macrophages. Flow cytometry studies showed enhanced polarization of macrophages into anti-inflammatory M2 phenotype when exposed to microparticles loaded with CU and CU powder as compared to unloaded microparticles
Czasopismo
Rocznik
Tom
Strony
15--24
Opis fizyczny
Bibliogr. 14 poz., rys., tab., wykr., zdj.
Twórcy
autor
- AGH University of Krakow, Faculty of Materials Science and Ceramics, Department of Biomaterials and Composites, al. A. Mickiewicza 30, 30-059 Krakow, Poland
autor
- AGH University of Krakow, Faculty of Materials Science and Ceramics, Department of Biomaterials and Composites, al. A. Mickiewicza 30, 30-059 Krakow, Poland
autor
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- INEB – Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Instituto Ciências Biomédicas Abel Salazar da Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
autor
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- INEB – Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Instituto Ciências Biomédicas Abel Salazar da Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
autor
- AGH University of Krakow, Faculty of Materials Science and Ceramics, Department of Biomaterials and Composites, al. A. Mickiewicza 30, 30-059 Krakow, Poland
Bibliografia
- [1] Kandregula B., Narisepalli S., Chitkara D.: Exploration of Lipid-Based Nanocarriers as Drug Delivery Systems in Diabetic Foot Ulcer. Molecular Pharmaceutics 19(7) (2022) 1977–1998, doi:10.1021/acs.molpharmaceut.1c00970.
- [2] Gowthamarajan K., Karri V.V.S.R., Satish Kumar M.N.: Multiple Biological Actions of Curcumin in the Management of Diabetic Foot Ulcer Complications: A Systematic Review. Tropical Medicine and Surgery 3 (2015) 179, doi:10.4172/2329-9088.1000179.
- [3] Akhtar S., Latif M., Ahmed O.S., Sarwar A., Alina A., Khan M.I.: Prevalence of foot ulcers in diabetic patients in Punjab, Pakistan. Fronteries in Public Health 8(10) (2022) 967733, doi:10.3389/fpubh.2022.967733.
- [4] Salad A.M., Duale H.A., Sheikh I.M., Hassan G.D., Farah A.A., Gele A.: Prevalence of diabetes foot ulcers and associated factors among adult diabetic patients in three referral hospitals in Mogadishu, Somalia. Fronteries in Public Health 11 (2023) 1195483, doi:10.3389/fpubh.2023.1195483.
- [5] Driver V.R., Fabbi M., Lavery L.A., Gibbons G.: The costs of diabetic foot: The economic case for the limb salvage team. Journal of Vascular Surgery 52(3) (2010) 17S-22S, doi:10.1016/j.jvs.2010.06.003.
- [6] Spampinato S.F., Caruso G.I., De Pasquale R., Sortino M.A., Merlo S.: The Treatment of Impaired Wound Healing in Diabetes: Looking among Old Drugs. Pharmaceuticals 13(4) (2020) 60, doi:10.3390/ph13040060.
- [7] Akbik D., Ghadiri M., Chrzanowski W., Rohanizadeh R.: Curcumin as a wound healing agent. Life Sciences 116(1) (2014) 1–7, doi:10.1016/j.lfs.2014.08.016.
- [8] Krzyszczyk P., Schloss R., Palmer A., Berthiaume F.: The Role of Macrophages in Acute and Chronic Wound Healing and Interventions to Promote Pro-wound Healing Phenotypes. Fronteries in Physiology 9 (2018) 419, doi:10.3389/fphys.2018.00419.
- [9] Sousa A.B., Águas A.P., Barbosa M.A., Barbosa J.N.: Immunomodulatory biomaterial-based wound dressings advance the healing of chronic wounds via regulating macrophage behaviour. Regenerative Biomaterials 9 (2022) rbac065, doi:10.1093/rb/rbac065.
- [10] Jaszcz K.: Synthesis and Characterization of New Functional Poly(ester-anhydride)s Based on Succinic and Sebacic Acids. Macromolecular Symposia 254(1) (2007) 109–116, doi:10.1002/masy.200750817.
- [11] Kwiecień K., Reczyńska-Kolman K., Niewolik D., Jaszcz K., Pamuła E.: Poly(sebacic anhydride) microparticles loaded with curcumin for pulmonary purposes. Engineering of Biomaterials 162(24) (2021), doi:10.34821/eng.biomat.162.2021.7-12.
- [12] Oliveira M.I., Pinto M.L., Gonçalves R.M., Martins M.C.L., Santos S.G., Barbosa M.A.: Adsorbed Fibrinogen stimulates TLR-4 on monocytes and induces BMP-2 expression. Acta Biomaterialia 49 (2017) 296–305, doi:10.1016/j.actbio.2016.11.034.
- [13] Bessa-Gonçalves M., Silva A.M., Brás J.P., Helmholz H., Luthringer-Feyerabend B.J.C., Willumeit-Römer R., Barbosa M.A., Santos S.G.: Fibrinogen and magnesium combination biomaterials modulate macrophage phenotype, NF-kB signaling and crosstalk with mesenchymal stem/stromal cells. Acta Biomaterialia 114 (2020) 471–484, doi:10.1016/j.actbio.2020.07.028.
- [14] Reczyńska-Kolman K., Hartman K., Kwiecień K., Brzychczy--Włoch M., Pamuła E.: Composites Based on Gellan Gum, Alginate and Nisin-Enriched Lipid Nanoparticles for the Treatment of Infected Wounds. International Journal of Molecular Sciences 23(1) (2022) 321, doi:10.3390/ijms23010321.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu „Społeczna odpowiedzialność nauki” - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e0bcdfdc-9ef3-49b0-9477-ab129d2c66e2