PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Review on metallic oxide nanoparticles and their application in optoelectronic devices

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Among the large family of metallic oxides, there is a considerable group possessing excellent semiconducting properties. What follows, they are promising materials for applications in the field of optoelectronics and photonics. Thanks to the development of nanotechnology in the last few decades, it is now possible to manufacture a great variety of different nanostructures. By controlling their size, shape, composition and crystallinity, one can influence such properties as band gap, absorption properties, surface to volume ratio, conductivity, and, as a consequence, tune the material for the chosen application. The following article reviews the research conducted in the field of application of the metallic oxide nanoparticles, especially ZnO, TiO2 and ITO (Indium-Tin Oxide), in such branches of optoelectronics as solid-state lightning, photodetectors, solar-cells and transparent conducting layers.
Twórcy
  • Department of Semiconductor and Optoelectronics Devices, Faculty of Electrical, Electronic, Computer and Control Engineering, Lodz University of Technology, Lodz, Poland
  • Department of Semiconductor and Optoelectronics Devices, Faculty of Electrical, Electronic, Computer and Control Engineering, Lodz University of Technology, Lodz, Poland
  • Department of Semiconductor and Optoelectronics Devices, Faculty of Electrical, Electronic, Computer and Control Engineering, Lodz University of Technology, Lodz, Poland
  • Department of Semiconductor and Optoelectronics Devices, Faculty of Electrical, Electronic, Computer and Control Engineering, Lodz University of Technology, Lodz, Poland
Bibliografia
  • [1] Portier, J. et al., Thermodynamic correlations and band gap calculations in metal oxides (2004) Progress in Solid State Chemistry, 32 (3-4), pp. 207-217
  • [2] Pugazhenthi, I. et al., UV and corrosion protective behavior of polymer hybrid coating on mild steel, 2018) Journal of Applied Polymer Science, 135 (16), art. no. 46175
  • [3] Wang, H. et al., Low thermal conductivity of monolayer ZnO and its anomalous temperaturę dependence, (2017), Physical Chemistry Chemical Physics, 19, pp. 12882-12889
  • [4] Pandiyarasan, V. et al., Morphology dependent thermal conductivity of ZnO nanostructures prepared via a green approach, (2017), Journal of alloys and compounds, 695, pp. 888-894
  • [5] Janotti, A. et al., Fundamentals of zinc oxide as a semiconductor, (2009) Reports on Progress in Physics, 72 (12), art. no. 126501
  • [6] Hecht, D.S. et al., Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures,(2011) Advanced Materials, 23 (13), pp. 1482-1513
  • [7] Fortunato, E. et al, Oxide semiconductor thin-film transistors: A review of recent advances,(2012) Advanced Materials, 24 (22), pp. 2945-2986
  • [8] Meyer, J. et al., Transition metal oxides for organic electronics: Energetics, device physics and applications, (2012) Advanced Materials, 24 (40), pp. 5408-5427
  • [9] Ramanathan, K. et al., Properties of 19.2% efficiency ZnO/CdS/CuInGaSe2 thin-film solar cells, (2003) Progress in Photovoltaics: Research and Applications, 11 (4), pp. 225-230
  • [10] Tsukazaki, A. et al., Repeated temperature modulation epitaxy for p-type doping and light- emitting diode based on ZnO (2005) Nature Materials, 4 (1), pp. 42-45
  • [11] Jagadish, C. et al., Zinc Oxide Bulk, Thin Films and Nanostructures, (2006) Zinc Oxide Bulk, Thin Films and Nanostructures, Elsevier Science
  • [12] Wong, T.K.S. et al., Current status and future prospects of copper oxide heterojunction solar cells, (2016) Materials, 9 (4), art. no. 271
  • [13] Tsai T. Y. et al., P-Cu2O-shell/n-TiO2-nanowire-core heterostructure photodiodes, (2011) Nanoscale Res Lett 6:575, pp. 1-7
  • [14] Bai, Y. et al., Titanium dioxide nanomaterials for photovoltaic applications, (2014) Chemical Reviews, 114 (19), pp. 10095-10130
  • [15] Vinod Kumar et al., Rare Earth Doped Zinc Oxide Nanophosphor Powder: A Future Material for Solid State Lighting and Solar Cells, ACS Photonics 2017 4 (11), pp. 2613-2637
  • [16] Comini, E. Metal oxide nano-crystals for gas sensing (2006) Analytica Chimica Acta, 568 (1-2), pp. 28-40
  • [17] Tranquada, J.M. et al., Evidence for stripe correlations of spins and holes in copper oxide superconductors, (1995) Nature, 375 (6532), pp. 561-563
  • [18] Diao F. et al., Transition metal oxide nanostructures: premeditated fabrication and applications in electronic and photonic devices (2018) Journal of Materials Science, 53 (6), pp. 4334-4359
  • [19] Zhu S.J. et al., Rational design of octahedron and nanowire CeO2@MnO2 core-shell heterostructures with outstanding rate capability for asymmetric supercapacitors (2015), Chem Commun 51, pp. 14840-14843
  • [20] Altavilla, C. (Ed.), Ciliberto, E. (Ed.). (2011). Inorganic Nanoparticles. Boca Raton: CRC Press
  • [21] Litvin, A.P. et al., Colloidal quantum dots for optoelectronics (2017) Journal of Materials Chemistry A, 5 (26), pp. 13252-13275
  • [22] Alivisatos, A.P., Semiconductor clusters, nanocrystals, and quantum dots, (1996) Science, 271 (5251), pp. 933-937
  • [23] Stankic, S. et al., Pure and multi metal oxide nanoparticles: Synthesis, antibacterial and cytotoxic properties,(2016) Journal of Nanobiotechnology, 14 (1), art. no. 73
  • [24] Heiligtag, F.J. et al, The fascinating world of nanoparticle research,(2013) Materials Today, 16 (7- 8), pp. 262-271
  • [25] Ren, Y. et al., Nanoparticulate TiO 2(B): An anode for lithium-ion batteries, (2012) Angewandte Chemie - International Edition, 51 (9), pp. 2164-2167
  • [26] Espitia, P.J.P. et al., Zinc Oxide Nanoparticles: Synthesis, Antimicrobial Activity and Food Packaging Applications, (2012) Food and Bioprocess Technology, 5 (5), pp. 1447-1464
  • [27] Casey, P., Nanoparticle technologies and applications,(2006) Nanostructure Control of Materials, pp. 1-31
  • [28] A. Apostoluk et al., Efficient ultraviolet light frequency down-shifting by a thin film of ZnO nanoparticles, International Journal of Nanotechnology 11 (2012), pp. 1240022-1-1240022-5
  • [29] Aghababazadeh, R. et al., ZnO Nanoparticles Synthesised by mechanochemical processing, (2006) Journal of Physics: Conference Series, 26 (1), pp. 312-314
  • [30] Thiagarajan, S. et al., Facile Methodology of Sol-Gel Synthesis for Metal Oxide Nanostructures, (2017), Recent Appl. Sol-Gel Synth., pp. 1-16
  • [31] Huotari, J. et al., Pulsed Laser Deposition of Metal Oxide Nanoparticles, Agglomerates, and Nanotrees for Chemical Sensors, (2015), Procedia Engineering, 120, pp. 1158-1161
  • [32] A. Maulu, P. J. et al., Strongly-coupled PbS QD solids by Doctor Blading for IR Photodetection, RSC Adv., 2016, 6, pp. 80201-80212
  • [33] Colvin, V.L. et al., Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer, (1994) Nature, 370 (6488), pp. 354-357
  • [34] Neshataeva, E. et al., All-inorganic light emitting device based on ZnO nanoparticles, (2009) Applied Physics Letters, 94 (9), art. no. 091115
  • [35] Steigerwald, D.A. et al., Illumination with solid state lighting technology (2002) IEEE Journal on Selected Topics in Quantum Electronics, 8 (2), pp. 310-320
  • [36] Tao Ding et al., Colloidal quantum-dot LEDs with a solution-processed copper oxide (CuO) hole injection layer, Organic Electronics, Volume 26, 2015, pp. 245-250
  • [37] Kim, H. Y. et al., Transparent InP Quantum Dot Light‐Emitting Diodes with ZrO2 Electron Transport Layer and Indium Zinc Oxide Top Electrode, (2016) Adv. Funct. Mater., 26, pp. 3454-3461
  • [38] Y.-J. Kwack et al., Solution-Processed Quantum Dot LEDs Using Molybdenum Oxide and Titanium Oxide as Charge Transport Layers, J. Nanoelectron. Optoelectron., 2016, 11, pp. 234-238
  • [39] Apostoluk, A. et al., Investigation of luminescent properties of ZnO nanoparticles for their use as a down-shifting layer on solar cells (2013) Physica Status Solidi (C) Current Topics in Solid State Physics, 10 (10), pp. 1301-1307
  • [40] Apostoluk A. et al., "Improvement of the solar cell efficiency by the ZnO nanoparticle layer via the down-shifting effect" Microelectronic Engineering Volume 127, 5 September 2014, pp. 51-56
  • [41] Znajdek K. et al., Zinc oxide nanoparticles for improvement of thin film photovoltaic structures’ efficiency through down shifting conversion (2017) Opto-electronics Review, 25 (2), pp. 99-102
  • [42] Znajdek K et al., Luminescent layers based on rare earth elements for thin-film flexible solar cells applications, Optik - International Journal for Light and Electron Optics 165 (2018), pp. 200-209
  • [43] Trupke, T. et a., Improving solar cell efficiencies by up-conversion of sub-band-gap light. J. Appl. Phys., 92 (7) (2002), pp. 4117-4122
  • [44] Das, R. et al., Dual Mode Luminescence in Rare Earth (Er3+/Ho3+) Doped ZnO Nanoparticles Fabricated by Inclusive Coprecipitation Technique. J. Mater. Sci.: Mater. Electron. 2015, 26, pp. 7174-7182
  • [45] Goldschmidt, J.C. et al., Fluorescent Concentrators for Photovoltaic Applications (2015) in Photon Management in Solar Cells, Wiley VCH
  • [46] Lo Chin Kim, et. al. “A New Hybrid Algorithm Using Thermodynamic and Backward Ray-Tracing Approaches for Modeling Luminescent Solar Concentrators” December 2010, doi: 10.3390/en3121831
  • [47] Minami, T., Transparent conducting oxide semiconductors for transparent electrodes, (2005) Semiconductor Science and Technology, 20 (4), pp. S35-S44
  • [48] Cairns, D.R. et al., Strain-dependent electrical resistance of tin-doped indium oxide on polimer substrates, (2000) Applied Physics Letters, 76 (11), pp. 1425-1427
  • [49] Sibiński, M. et al., Degradation of flexible thin-film solar cells due to a mechanical strain (2017) Opto-electronics Review, 25 (1), pp. 33-36
  • [50] Sibiński, M. et al., AZO layers deposited by PLD method as flexible transparent emitter electrodes for solar cells (2014) Microelectronic Engineering, 127, pp. 57-60
  • [51] Sibiński, M. et al., Comparison of ZnO:Al, ITO and carbon nanotube transparent conductive layers in flexible solar cells applications (2012) Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 177 (15), pp. 1292-1298
  • [52] Ederth, J. et al., Thin porous indium tin oxide nanoparticle films: Effects of annealing in vacuum and air (2005) Applied Physics A: Materials Science and Processing, 81 (7), pp. 1363-1368
  • [53] Heusing, S. et al., Wet chemical deposited ITO coatings on flexible substrates for organic photodiodes,(2009) Thin Solid Films, 518 (4), pp. 1164-1169
  • [54] Ward, K.R. . et al.,Nanoparticle modified electrodes can show an apparent increase in electrode kinetics due solely to altered surface geometry: The effective electrochemical rate constant for nonflat and non-uniform electrode surfaces (2013) Journal of Electroanalytical Chemistry, 695, pp. 1-9
  • [55] Lee, D. et al., Transparent electrode with ZnO nanoparticles in tandem organic solar cells, (2011) Solar Energy Materials and Solar Cells, 95 (1), pp. 365-368
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e0bbe812-4f35-42cf-b881-6741d911ac92
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.