PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

VHDL-AMS Models for Current Conveyor Based Monolithic Operational Amplifiers

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper focuses on analysis and behavioral modeling of second generation positive and negative current conveyors (CCII+s, CCII‒s), as well current-controlled current conveyors (CCCIIs). On the basis of the proposed CCII+ model improved behavioral models for three-terminal and four-termi-nal monolithic CFOAs are created. The models are developed by using VHDL analog and mixed-signal (VHDL-AMS) language and the descriptions are adapted to the SystemVision (version 5.5) simulation program, which is a part of the Mentor Graphics system. The proposed models simulate static and dynamic para-meters for differential and common-mode input signals at room temperature, including the parameters input offsets, accurate input impedances, non-dominant poles at differential input signals, AC common-mode rejection, PSRR effects, output impe-dances, slew rate limiting and terminal voltage/current operating ranges. The modeling parameters are extracted for commercially available four-terminal CFOA AD844A and CCCII OPA860 by analyzing semiconductor data books or through characterization measurements. For the validation process simulation and experi-mental results for sample electronic circuits are given.
Twórcy
  • Department of Electronics, Technical University of Sofia, 1000 Sofia, Bulgaria
Bibliografia
  • [1] A. Sedra, K. Smith, “A second-generation current conveyor and its applications,” IEEE Transactions on Circuit Theory, vol. 17, pp. 132 - 134, 1970.
  • [2] C. Toumazou, A. Payne, and J. Lidgey, “Current-feedback versus voltage feedback amplifiers: history, insight and relationships,” in Proc. of the IEEE International Symposium on Circuits and Systems, Chicago, IL, USA, 1993, pp. 1046-1049.
  • [3] W. Jung, “Hardware and Housekeeping techniques,” in OpAmp applications, Analog Devices, MA, USA, 2004, ch. 7, pp. 141-149.
  • [4] AN-840. Development of an Extensive SPICE Macromodel for “Current-Feedback” Amplifiers, Texas Instruments, Application report, SNOA247B-July 1992. [Online]. Available: http://www.ti.com/lit/an/ snoa247b/snoa247b.pdf.
  • [5] J. Roach, F. Lidgey, S. Porta, “New small-signal macromodel for current-feedback op-amps,” Institution of Electrical Engineers, 1994.
  • [6] R. Mancini, “Comparison of Current Feedback Opamp SPICE Models,” Harris Semiconductor, Application Notes HA5013 1996, pp. 1-7, [Online]. Available: https://www.intersil.com/content/dam/Intersil/ documents/an96/an9621.pdf.
  • [7] A. Fabre, M. Alami, “A precise macromodel for second generation current conveyors,” IEEE Transactions on Circuits and Systems - I, vol.44, pp. 639-642, 1997.
  • [8] N. Tarim, B. Yenen and H. Kuntman, “Simple and accurate non-linear current conveyor macromodel suitable for simulation of active filters using CCIIs,” International journal of circuit theory and applications, vol. 26, pp. 27-38, 1998.
  • [9] M. Yalout, AbdelFattsh, I. AbdelFattah, A. Elbazz, “Macromodel Circuit for BiCMOS Sccoiid Geiierdtion Currcnt Conveyor (CCII),” in Proc. of the Eighteenth National Radio Science Conference, Mansoura, Egypt, 2001, pp. 541-549.
  • [10] A. Tutyshkin, A. Korotkov, “Nonlinear and Noise Macrbmodel of CMOS Current Conveyor,” in Proc. of the International Symposium on Signals, Circuits and Systems, vol. 2, Iasi, Romania, 2005, pp. 405-408.
  • [11] D. Beniamin, “First Generation Current Conveyor Macromodel,” in Proc. of the 9th International Symposium on Electronics and Telecommunications (ISETC), Timisoara, Romania, 2010, pp. 51-54.
  • [12] C. Sanchez-López, M. Carrasco-Aguilar and F. E. Morales-López, “A SPICE-Compatible Nonlinear CCII Macromodel,” Journal of Circuits, Systems, and Computers, vol. 26, no. 9, 1750144 (8 pages), 2017.
  • [13] J. Nixon and J. Scott, “Macromodel of a current-feedback amplifier,” in Proc. of the. IEEE International Symposium on Circuits and Systems, vol. 4, New Orleans, LA, USA, 1990, pp. 3213-3216.
  • [14] D. Bowers, M. Alexander, and J. Buxton, “A comprehensive simulation macromodel for `current feedback' operational amplifiers,” IEE Proceedings G - Circuits, Devices and Systems, vol. 137, pp. 137-145, 1990.
  • [15] E. Alarcón, A. Frigola, E. Vidal, and A. Poveda, “A new CFA frequency model including load-dependent instabilities,” in Proc. of the IEEE 39th Midwest Symposium on Circuits and Systems (MWSCAS96), vol.1, 1996, pp 455-458.
  • [16] M. Eltawil, A. Soliman, “New precise Spice macromodels for the current-feedback operational amplifier,” Microelectronics Journal, vol. 30, pp. 841-849, 1999.
  • [17] E. Ortega-Torres, S. Ruíz-Hernández, and C. Sánchez-López, “A nonlinear macromodel for current-feedback operational amplifiers,” Microelectronics Journal, vol. 46, pp. 941-949, 2015.
  • [18] R. Batra, P. Li, L. Pileggi, and Yu-Tsun Chien, “A Methodology for Analog Circuit Macromodeling,” in Proc. of the IEEE International Behavioral Modeling and Simulation Conference, San Jose, CA, USA, 2004, pp. 41-46.
  • [19] D. Damon, E. Cristen, “Introduction to VHDL-AMS - Part 1: Structural and discrete time concepts,” in Proc. of the IEEE International Symposium on Computer-Aided Control System Design, 1996, pp. 264-269.
  • [20] F. Pêcheux, C. Lallement, and A. Vachoux, “VHDL-AMS and Verilog-AMS as alternative hardware description languages for efficient modelling of multidiscipline systems,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 24, no. 2, pp. 204-225, 2005.
  • [21] E. Christen, K. Bakalar, “VHDL-AMS - A hardware description language for analog and mixed-signal applications,” IEEE Transactions on circuits and systems - II, vol. 46, pp. 1263-1272, 1999.
  • [22] Open Verilog International, 15466 Los Gatos, CA. Verilog-A Language Reference Manual, [Online]. Available: http://www.verilog.org/ verilogams/htmlpages/public-docs/lrm/VerilogA/verilog-a-lrm-1-0.pdf.
  • [23] K. Hayatleh, A. Tammam, and B. Hart, “Analysis of the input stage of the CFOA,” Int. J. Electron. Commun. (AEÜ), vol. 64, pp. 344-350, 2010.
  • [24] B. Mongellaz, F. Marc, N. Milet-Lewis, and Y. Danto, “Contribution to ageing simulation of complex analogue circuit using VHDL-AMS behavioural modelling language,” Microelectronic Reliability, vol. 42, pp. 1353-1358, 2002.
  • [25] H. Qin and F. Wang, “Modeling of Operational Amplifier based on VHDL-AMS,” in Proc. of the 13th IEEE International Conference on Electronics, Circuits and Systems, Nice, France, 2006, pp. 894-897.
  • [26] R. El-Queseny, S. Mahmoud, and M. Ibrahim, “Modeling of CFOA based non-inverting amplifier using standard hardware description language,” in Proc. of the 52nd IEEE International Midwest Symposium on Circuits and Systems, Cancun, Mexico, 2009, pp. 37-40.
  • [27] I. Pandiev, “Behavioural VHDL-AMS Model for the Current-Feedback Operational Amplifier,” in Proc. of the XLV International Scientific Conference on Information, Communication and Energy Systems and Technologies (ICEST), Ohrid, Macedonia, 2010, pp. 811-814.
  • [28] A. Farbe, O. Saaid, F. Wiest, and C. Boucheron, “Current controlled band pass filter based on translinear conveyors,” Electronics Letters, vol. 31, pp 1727-1728, 1995.
  • [29] A. Sedra S., G. W. Roberts, and F. Gohh, “The current conveyor: history, progress and new results,” in Proc. of the ISCAS, 1990, vol. 137, pp 78-87.
  • [30] E. Altuntas and A. Toker, “Realization of voltage and current mode KHN biquads using CCCIIs,” Int. J. Electron. Commun. (AEÜ), vol. 56, pp. 45-49, 2002.
  • [31] K. Hayatleh, A, A. Tammam, and B. L. Hart, “Open-loop output characteristics of a current feedback operational amplifier,” Int. J. Electron. Commun. (AEÜ), vol. 64, pp. 1196-1202, 2010.
  • [32] S. Robinson, “Conceptual modeling for simulation: Issues and research requirements,” in Proc. of the 2006 Winter Simulation Conference, 2006, pp. 792-799.
  • [33] 60 MHz 2000 V/μs monolithic op amp AD844 - datasheet. Analog Devices, Norwood, MA, USA, 2009. [Online]. Available: http://www.analog.com.
  • [34] S.-I. Liu, “Universal filter using two current-feedback amplifiers,” Electronics Letters, vol. 31, pp. 629-630, 1995.
  • [35] Wide bandwidth operational transconductance amplifier (OTA) and buffer OPA860 - datasheet. Texas Instruments, Dallas, TX, USA, 2008. [Online]. Available: http://www.ti.com.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e0ba9db9-cba1-45d9-890f-838d3dced807
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.