PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Investigation of Infrared Thermography of Cortical Bone Grinding in Neurosurgery

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work, an effort has been made to determine the effect of different shape surgical burr on the thermogenesis during bone osteotomy. The abrasion during bone grinding leads to heat generation and subsequently rise in the temperature which may have adverse effects such as osteonecrosis, blood coagulation in the carotid artery, damage to sciatic nerves, and even loss of vision. So, mitigating the temperature rise during bone grinding is of paramount importance. Especially, in endoscopic endonasal approach (EEA) in which nasal passage is used for the inserting the grinding burr and reaching the target region. The miniature abrasion can significantly increase the temperature and hence leads to the thermal damage to nerves surrounding the temporal and frontal lobe. These parts of the brain controls movement, problem solving ability, behavior, personality mood, hearing, language, memory, speech, breathing, heart rate, consciousness etc. Furthermore, neurosurgeons rely on their personal surgical experience for estimating the temperature rise during grinding. However, this is much difficult for novice surgeons. Therefore, it becomes critically important to preserve the soft neural tissues and nerves amid bone grinding. To overcome these concerns, infrared thermography technique has been exploited to determine the possibility of thermogenesis during bone grinding by measuring the temperature rise and its distribution using infrared camera. All experiments have been carried at a constant set of process variables. The grinding zone is continuously flooded with the irrigating solution to remove the heat and bone debris away from the grinding site. It has been observed that convex tool shape generated lower maximum temperature i.e. 46.03 ℃ among all tools. The temperature produced by the convex tool is 12.06% lower than spherical tool, 33.39% lower than cylindrical tool, and 10.55% lower than tree-shape tool. The results showed that convex shape tool could prevent thermal necrosis in the bone as temperature caused (i.e. 46 ℃) was less than the threshold limit of osteonecrosis. Thermograms revealed that infrared thermography technique could be implemented for the in-vivo surgical operations for the measurement of temperature during bone grinding.
Twórcy
autor
  • Department of Mechanical Engineering, SGT University, Gurugram (Haryana), 122505, India
autor
  • Mechanical Engineering Department, Thapar Institute of Engineering and Technology, Patiala, 147003, India
  • Mechanical Engineering Department, Thapar Institute of Engineering and Technology, Patiala, 147003, India
  • Department of Industrial and Production Engineering, Dr. B.R Ambedkar National Institute of Technology, Jalandhar, 144011, India
  • School of Mechanical Engineering, Lovely Professional University, Phagwara, Punjab, 144411, India
  • Division of Research and Development, Lovely Professional University, Phagwara, 144411, India
  • Division of Research & Innovation, Uttaranchal University, Uttarakhand, 248007, Dehradun, India
  • Faculty of Mechanical Engineering, Opole University of Technology, ul. Mikołajczyka 5, Opole 45-271, Poland
Bibliografia
  • 1. Shih, A.J., Tai, B.L., Zhang, L., Sullivan, S., Malkin, S. Prediction of Bone Grinding Temperature in Skull Base Neurosurgery. CIRP Ann Manuf. Technol. 2012; 61: 307–310. DOI: 10.1016/j.cirp.2012.03.078.
  • 2. Wang, G., Zhang, L., Wang, X., Tai, B.L. An Inverse Method to Reconstruct the Heat Flux Produced by Bone Grinding Tools. International Journal of Thermal Sciences. 2016; 101: 85–92. DOI: 10.1016/j.ijthermalsci.2015.10.021.
  • 3. Zhang, L., Tai, B.L., Wang, G., Zhang, K., Sullivan, S., Shih, A.J. Thermal Model to Investigate the Temperature in Bone Grinding for Skull Base Neurosurgery. Med Eng Phys. 2013; 35: 1391–1398. DOI: 10.1016/j.medengphy.2013.03.023.
  • 4. Babbar, A., Jain, V., Gupta, D., Agrawal, D. Histological Evaluation of Thermal Damage to Osteocytes: A Comparative Study of Conventional and UltrasonicAssisted Bone Grinding. Med Eng Phys. 2021; 90: 1–8. DOI: 10.1016/j.medengphy.2021.01.009.
  • 5. Tai, B.L., Zhang, L., Wang, A.C., Sullivan, S., Wang, G., Shih, A.J. Temperature Prediction in High Speed Bone Grinding Using Motor PWM Signal. Med Eng Phys. 2013; 35: 1545–1549, doi:10.1016/j.medengphy.2013.05.011.
  • 6. Shin, H.C., Yoon, Y.S. Bone Temperature Estimation during Orthopaedic Round Bur Milling Operations. J Biomech. 2006; 39: 33–39. DOI: 10.1016/j.jbiomech.2004.11.004.
  • 7. Matthews, L.S., Hirsch, C. Temperatures Measured in Human Cortical Bone When Drilling. J Bone Joint Surg Am. 1972; 54: 297–308. DOI: 10.2106/00004623-197254020-00008.
  • 8. Zhang, L., Tai, B.L., Wang, A.C., Shih, A.J. Mist Cooling in Neurosurgical Bone Grinding. CIRP Annals. 2013; 62: 367–370. DOI: 10.1016/j.cirp.2013.03.125.
  • 9. Yang, M., Li, C., Zhang, Y., Jia, D., Zhang, X., Hou, Y., Shen, B., Li, R. Microscale Bone Grinding Temperature by Dynamic Heat Flux in Nanoparticle Jet Mist Cooling with Different Particle Sizes. Materials and Manufacturing Processes. 2018; 33: 58–68. DOI: 10.1080/10426914.2016.1244846
  • 10. Yang, M., Li, C., Zhang, Y., Wang, Y., Li, B., Hou, Y. Experimental Research on Microscale Grinding Temperature under Different Nanoparticle Jet Minimum Quantity Cooling. Materials and Manufacturing Processes. 2017; 32: 589–597. DOI: 10.1080/10426914.2016.1176198
  • 11. Mizutani, T., Satake, U., Enomoto, T. Surgical Diamond Wheels for Minimally Invasive Surgery in Bone Resection under Small Quantity of Coolant Supply. Precis Eng. 2019; 56: 80–86. DOI: 10.1016/j.precisioneng.2018.09.015.
  • 12. Kumar, R., Panda, S.S. Drilling of Bone : A Comprehensive Review. J Clin Orthop Trauma. 2013; 4: 15–30. DOI: 10.1016/j.jcot.2013.01.002.
  • 13. Shakouri, E., Mirfallah, P. Infrared Thermography of High-Speed Grinding of Bone in Skull Base Neurosurgery. Proc Inst Mech Eng H. 2019; 233: 648–656. DOI: 10.1177/0954411919845730.
  • 14. Zhang, L., Tai, B.L., Wang, A.C., Shih, A.J. Mist Cooling in Neurosurgical Bone Grinding. CIRP Ann Manuf Technol. 2013; 62: 367–370. DOI: 10.1016/j.cirp.2013.03.125.
  • 15. Singh, G., Jain, V., Gupta, D. Multi-Objective Performance Investigation of Orthopaedic Bone Drilling Using Taguchi Membership Function. Proc Inst Mech Eng H. 2017; 231: 1133–1139. DOI: 10.1177/0954411917735129.
  • 16. Gupta, V., Pandey, P.M. In-Situ Tool Wear Monitoring and Its Effects on the Performance of Porcine Cortical Bone Drilling: A Comparative in-Vitro Investigation. Mech Adv Mater Mod Process. 2017; 3(2). DOI: 10.1186/s40759-017-0019-z.
  • 17. Gupta, V., Pandey, P.M. Experimental Investigation and Statistical Modeling of Temperature Rise in Rotary Ultrasonic Bone Drilling. Med Eng Phys. 2016; 38: 1330–1338. DOI: 10.1016/j.medeng-phy.2016.08.012.
  • 18. Enomoto, T., Shigeta, H., Sugihara, T., Satake, U. A New Surgical Grinding Wheel for Suppressing Grinding Heat Generation in Bone Resection. CIRP Annals. 2014; 63: 305–308. DOI: 10.1016/j.cirp.2014.03.026.
  • 19. Shakouri, E., Mirfallah, P. Infrared Thermography of High-Speed Grinding of Bone in Skull Base Neurosurgery. Proc Inst Mech Eng H. 2019; 233: 648–656. DOI: 10.1177/0954411919845730.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e0b06db6-4561-4b10-8309-360a435ba930
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.