Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper presents an analysis of a proposed flying start method for sensorless electric drives based on an induction machine. The method introduces two stages. In the first stage, the rotor speed is estimated using the step response of the machine, which enables coarse estimation of the speed and direction of rotation, helping to reduce the initial slip. The second stage introduces an intermediate control system to facilitate the machine restart and assist the speed observer in converging. Simulation and experimental studies demonstrate that the method successfully restarts the machine with an unknown initial rotor speed without exceeding the nominal current. The auxiliary control system fully excites a 5.5 kW machine within 300 ms during the flying start, after which it is possible to transition to the target control system.
Rocznik
Tom
Strony
art. no. e154206
Opis fizyczny
Bibliogr. 18 poz., rys., tab., wykr.
Twórcy
autor
- Department of Electric Drives and Energy Conversion, Faculty of Electrical and Control Engineering and EkoTech Center, Gdansk University of Technology, ul. Narutowicza 11/12, 80-233 Gdańsk, Poland
Bibliografia
- [1] H. Iura, K. Ide, T. Hanamoto, and Z. Chen, “An Estimation Method of Rotational Direction and Speed for Free-Running AC Machines Without Speed and Voltage Sensor,” IEEE Trans. Ind. Appl., vol. 47, no. 1, pp. 153–160, Jan. 2011, doi: 10.1109/TIA.2010.2091670.
- [2] K. Lee, S. Ahmed, and S.M. Lukic, “Universal restart strategy for high-inertia scalar-controlled PMSM drives,” IEEE Trans. Ind. Appl., vol. 52, no. 5, pp. 4001–4009, Sep. 2016, doi: 10.1109/TIA.2016.2581764.
- [3] L. Pravica, D. Sumina, T. Bariša, M. Kovačić, and I. Čolović, “Flying start of a permanent magnet wind power generator based on a discontinuous converter operation mode and a phase-locked loop,” IEEE Trans. Ind. Electron., vol. 65, no. 2, pp. 1097–1106, Jul. 2017, doi: 10.1109/TIE.2017.2733453.
- [4] D.W. Seo, Y. Bak, and K.B. Lee, “An Improved Rotating Restart Method for a Sensorless Permanent Magnet Synchronous Motor Drive System Using Repetitive Zero Voltage Vectors,” IEEE Trans. Ind. Electron., vol. 67, no. 5, pp. 3496–3504, May 2020, doi: 10.1109/TIE.2019.2914647.
- [5] K. Lee, S. Lukic, and S. Ahmed, “A universal restart strategy for induction machines,” in 2016 IEEE Energy Conversion Congress and Exposition (ECCE), IEEE, Sep. 2016, pp. 1–6. doi: 10.1109/ECCE.2016.7854802.
- [6] K. Lee, S. Ahmed, and S.M. Lukic, “Universal Restart Strategy for Scalar (V/f) Controlled Induction Machines,” IEEE Trans. Ind. Appl., vol. 53, no. 6, pp. 5489–5495, Nov. 2017, doi: 10.1109/TIA.2017.2733497.
- [7] H. Rostami Kisomi, K. Khalaj Monfared, and H. Iman-Eini, “Sensorless flying start method for starting of induction motors,” in 2021 12th Power Electronics, Drive Systems, and Technologies Conference (PEDSTC), IEEE, Feb. 2021, pp. 1–5, doi: 10.1109/PEDSTC52094.2021.9405820.
- [8] W. Hu, Z. Wu, L. Sun, and X. Cai, “Strategy for Restarting the Free-Running Induction Motor Driven by a High-Voltage Inverter Based on V/F Fuzzy Control,” in 2016 8th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC), IEEE, Aug. 2016, pp. 99–102, doi: 10.1109/IHMSC.2016.77.
- [9] S. Choi, J. Lee, C. Hong, and A. Yoo, “Restarting strategy for an induction machine driven with medium-voltage inverter,” in 2015 9th International Conference on Power Electronics and ECCE Asia (ICPE-ECCE Asia), IEEE, Jun. 2015, pp. 1881–1888, doi: 10.1109/ICPE.2015.7168035.
- [10] S. Yin et al., “Fast restarting of free-running induction motors under speed-sensorless vector control,” IEEE Trans. Ind. Electron., vol. 67, no. 7, pp. 6124–6134, Jul. 2020, doi: 10.1109/TIE.2019.2934077.
- [11] T. Kikuchi, Y. Matsumoto, and A. Chiba, “Fast Initial Speed Estimation for Induction Motors in the Low-Speed Range,” IEEE Trans. Ind. Appl., vol. 54, no. 4, pp. 3415–3425, 2018, doi: 10.1109/TIA.2018.2825292.
- [12] G. Verghese and S. Sanders, “Observers for flux estimation in induction machines,” IEEE Trans. Ind. Electron., vol. 35, no. 1, pp. 85–94, 1988, doi: 10.1109/41.3067.
- [13] H. Kubota, K. Matsuse, S. Member, and T. Nakmo, “DSP-Based Speed Adaptive Flux Observer of Induction Motor,” IEEE Trans. Ind. Appl., vol. 29, no. 2, pp. 344–348, 1993.
- [14] T. Białoń, A. Lewicki, M. Pasko, and R. Niestrój, “Non-proportional full-order Luenberger observers of induction motors,” Arch. Electr. Eng., vol. 67, no. 4, pp. 925–937, 2018, doi: 10.24425/aee.2018.124750.
- [15] Y. Laatra, H. Lotfi, and B. Abdelhani, “Speed sensorless vector control of induction machine with Luenberger observer and Kalman filter,” 2017 4th International Conference on Control, Decision and Information Technologies, CoDIT 2017, 2017, pp. 714–720, 2017, doi: 10.1109/CoDIT.2017.8102679.
- [16] Z. Krzemiński, “Observer of induction motor speed based on exact disturbance model,” 2008 13th International Power Electronics and Motion Control Conference, EPE-PEMC 2008, 2008, pp. 2294–2299, doi: 10.1109/EPEPEMC.2008.4635605.
- [17] D. Wachowiak, “Genetic Algorithm Approach for Gains Selection of Induction Machine Extended Speed Observer,” Energies (Basel), vol. 13, no. 18, p. 4632, Sep. 2020, doi: 10.3390/en13184632.
- [18] D. Wachowiak, “A Universal Gains Selection Method for Speed Observers of Induction Machine,” Energies (Basel), vol. 14, no. 20, p. 6790, Oct. 2021, doi: 10.3390/en14206790.
Uwagi
Financial support of these studies from the Gdańsk University of Technology by the DEC-4/1/2022/IDUB/I3b/Ag grant under the ARGENTUM – “Excellence Initiative – Research University” program is gratefully acknowledged.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e0a71660-1188-417f-b1a4-320b5e9fe974
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.