PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Power performance of farm tractor in field operations

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wykorzystanie mocy ciągnika rolniczego w pracach polowych
Języki publikacji
EN
Abstrakty
EN
Many studies have examined the effects of agriculture tractor engine energy performance. This paper presents an evaluation method of such engine actual power use during plowing operations. It includes results of a comparative study of power performance of a 230 kW tractor model John Deere 8330 subject to soil plowing operations as a function of field size: A (26 ha), B (12.74 ha), C (3.22 ha). Statistical data clustering, a relatively novel approach in studies on actual utilization of engine power, was used. A positive correlation was observed between field size and the active state of the engine: 75.2% field A; 68.8% field B; 46.8% field C. The actual power utilization of agriculture tractor engine as a function of field size was 0.62, 0.58 and 0.39 respectively for the three fields used in this study. With this evaluation approach, performance indexes of operational power performance in various conditions were obtained for possible use in optimization of plowing operations.
PL
Ocena stanu obciążenia silnika spalinowego w pojeździe podczas eksploatacji jest przedmiotem wielu prac badawczych. W artykule przedstawiono nową metodę oceny wykorzystania mocy silnika ciągnika rolniczego eksploatowanego podczas orki. Zaprezentowano wyniki badań porównawczych nad wykorzystaniem mocy ciągnika John Deere 8330 (230 kW) w odniesieniu do powierzchni uprawianych pól: A (26 ha), B (12,74 ha) i C (3,22 ha). Do analizy danych pomiarowych zastosowano po raz pierwszy statystyczną metodę grupowania punktów pomiarowych. Na podstawie wyników badań stwierdzono silną korelację dodatnią pomiędzy powierzchnią pól a stanem obciążenia silnika: 75,2% pole A; 68,8% pole B; 46,8% pole C. Opracowany wskaźnik efektywnego wykorzystania mocy silnika ciągnika rolniczego wyniósł odpowiednio: 0,62, 0,58 i 0,39. Stwierdzono, że uzyskane wartości wskaźnika efektywności wykorzystania mocy silnika mogą być przydatne do optymalizacji pracy ciągnika w pracach polowych.
Rocznik
Strony
43--47
Opis fizyczny
Bibliogr. 34 poz., rys., tab.
Twórcy
autor
  • Department of Systems Engineering Agronomic West Pomeranian University of Technology al. Piastów 17, 70-310 Szczecin, Poland
autor
  • Department of Systems Engineering Agronomic West Pomeranian University of Technology al. Piastów 17, 70-310 Szczecin, Poland
autor
  • Physics and Electrical Engineering Department University of Scranton PA 18510, USA
  • Department of Biomass Processing Technique Institute of Technology and Life Sciences ul. Biskupińska 76, 60-463 Poznań, Poland
Bibliografia
  • 1. Chłopek Z. Process modeling of exhaust gas emissions of combustion engine working in traction conditions. Oficyna Wydawnicza Politechniki Warszawskiej 1999;173:3-198
  • 2. Dyer J. A., Desjardins R. L. Simulated Farm Fieldwork. Energy Consumption and Related Greenhouse Gas Emissions in Canada. Biosystems Engineering 2003;85:503-513, http://dx.doi.org/10.1016/S1537-5110(03)00072-2.
  • 3. Dyer J. A., Desjardins R. L. Carbon Dioxide Emissions Associated with the Manufacturing of Tractors and Farm Machinery in Canada. Biosystems Engineering 2006;93:107-118, http://dx.doi.org/10.1016/j.biosystemseng.2005.09.011.
  • 4. Grisso R., Pitman R. Gear Up and Throttle Down - Saving Fuel. Virginia Cooperative Extension. Virginia Polytechnic Institute and University. Publication 2001;6:442-450.
  • 5. Harris H. D. Prediction of the Torque and Optimum Operating Point of Diesel Engines using Engine Speed and Fuel Consumption. Journal Agricultural Engineering Research 1992;53:93-101, http://dx.doi.org/10.1016/0021-8634(92)80076-5.
  • 6. Hung W. T., Tong H. Y., Lee C. P., Ha K., Pao L. Y. Development of a practical driving cycle construction methodology: A case study in Hong Kong. Transportation Research Part 2007;D12:115-128, http://dx.doi.org/10.1016/j.trd.2007.01.002.
  • 7. Intex. Fleet Management Systems. www.intex.net.pl.
  • 8. Jahns G., Forster K.J., Hellickson M. Computer Simulation of Diesel Engine Performance. Transactions of the ASAE 1990;33:764-770, http://dx.doi.org/10.13031/2013.31398.
  • 9. Janulevičius A., Juostas A., Pupinis G. Engine performance during tractor operational period. Energy Conversion and Management 2013;68:11-19, http://dx.doi.org/10.1016/j.enconman.2013.01.001.
  • 10. Janulevičius A., Juostas A., Pupinis G. Tractor's engine performance and emission characteristics in the process of ploughing. Energy Conversion and Management 2013;75:498-508, http://dx.doi.org/10.1016/j.enconman.2013.06.052.
  • 11. Kheiralla A. F., Azmi Y., Zohadie M., Ishak W. Modelling of power and energy requirements for tillage implements operating in Serdang sandy clay loam. Malaysia. Soil and Tillage Research 2004;78:21-34, http://dx.doi.org/10.1016/j.still.2003.12.011.
  • 12. Kichler C.M., Fulton J.P., Raper R.L., Mcdonald T.P., Zech W.C. Effects of transmission gear selection on performance and fuel costs during deep tillage operations. Soil and Tillage Research 2011;113:105-111.
  • 13. Kim J.H., Kim K.U., Wu Y.G. Analysis of transmission load of agricultural tractors. Journal of Terramechanics 2000;37:113-125, http://dx.doi.org/10.1016/S0022-4898(99)00022-1.
  • 14. Kim Y. J., Chung S. O., Choi C. H. Efects of gear selection of an agricultural tractor on transmission and PTO load during rotary tillage. Soil and Tillage Research 2013;134:90-96.
  • 15. Koniuszy A. The method of making time density characteristic of agricultural tractor engine by using TRS system. Annual Review of Agriculture Engineering 2008;6:13-22.
  • 16. Koniuszy A., Nadolny R., A method and a device of monitoring operation of the tractor. Nr PL 381892;2014.
  • 17. Kostencki P., Łętkowska B., Nowowiejski R. Field tests of resistance to abrasive wear of ploughshares made of boron steel. Tribologia 2013;249:49-79.
  • 18. Lindgren M. A Transient Fuel Consumption Model for Non-road Mobile Machinery. Biosystems Engineering 2005;91:139-147, http://dx.doi.org/10.1016/j.biosystemseng.2005.03.011.
  • 19. Mehta, C. R., Singh K., Selvan M. M. A decision support system for selection of tractor-implement system used on Indian farms. Journal of Terramechanics 2011;48:65-73, http://dx.doi.org/10.1016/j.jterra.2010.05.002.
  • 20. Mileusnić Z.I., Petrović D.V., Dević M.S. Comparison of tillage systems according to fuel consumption. Energy 2010;35:221-228, http://dx.doi.org/10.1016/j.energy.2009.09.012.
  • 21. Moitzi G., Haas M., Wagentristl H., Boxberger J., Gronauer A. Energy consumption in cultivating and ploughing with traction improvement system and consideration of the rear furrow wheel-load in ploughing. Soil and Tillage Research 2013;134:56-60.
  • 22. Pang S.N., Zoerb G.C., Wang G. Tractor Monitor Based on Indirect Fuel Measurement. Transactions of the ASAE 1985;28:994-998, http://dx.doi.org/10.13031/2013.32375 .
  • 23. Peca J.O., Serrano J.M., Pinheiro A., Carvalho M., Nunes M., Ribeiro L., Santos F. Speed advice for power efficient drawbar work. Journal of Terramechanics 2010;47:55-61, http://dx.doi.org/10.1016/j.jterra.2009.07.003.
  • 24. Renius K.T. Trends in Tractor Design with Particular Reference to Europe. Journal Agricultural Engineering Research 1994;57:3-22, http://dx.doi.org/10.1006/jaer.1994.1002.
  • 25. Riveiro J. A., Marey-Pérez M. F., Díaz-Varela E. R., Álvarez C. J. A methodology for the analysis of the relationships between farms and their physical environment. Journal of Agricultural Science 2010;148:101-116, http://dx.doi.org/10.1017/S0021859609990347.
  • 26. Saglam C., Akdemir B. Annual Usage of Tractors in North-West Turkey. Biosystems Engineering 2002;82:39-44, http://dx.doi.org/10.1006/bioe.2002.0046.
  • 27. Sahay C. S., Tewari V. K. Computer Simulation of Tractor Single-point Drawbar Performance. Biosystems Engineering 2004;88:419-428, http://dx.doi.org/10.1016/j.biosystemseng.2004.05.005.
  • 28. Serrano J. M., Peca J. O., Pinheiro A., Carvalho M., Nunes M., Ribeiro L., Santos F. The Effect of Gang Angle of Offset Disc Harrows on Soil Tilth. Work Rate and Fuel Consumption. Biosystems Engineering 2003;84:171-176, http://dx.doi.org/10.1016/S1537-5110(02)00261-1.
  • 29. Serrano J. M., Peca J. O., Silva M., Pinheiro A., Carvalho M. Tractor energy requirements in disc harrow systems. Biosystems Engineering 2007;98:286-296, http://dx.doi.org/10.1016/j.biosystemseng.2007.08.002.
  • 30. Statsoft, Cluster analysis. Electronic Textbook, (2015).
  • 31. Sogaard H. T., Sorensen C. G. A Model for Optimal Selection of Machinery Sizes within the Farm Machinery System. Biosystems Engineering 2004;89:13-28, http://dx.doi.org/10.1016/j.biosystemseng.2004.05.004.
  • 32. Souza E.G., Milanez L.F. (1988). Indirect Evaluation of the Torque of Diesel Engines. Transactions of the ASAE 1988;31:1350-1354, http://dx.doi.org/10.13031/2013.30869.
  • 33. Souza E.G., Santa Catarina A. Optimum Working Curve for Diesel Engines. Transactions of the ASAE 1999;42:559-563, http://dx.doi.org/10.13031/2013.13216.
  • 34. Wang G., Zoerb G.C. Determination of Optimum Working Points for Diesel Engines. Transactions of the ASAE 1989;32:1519-1522, http://dx.doi.org/10.13031/2013.31182.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e0a5a9ca-570d-49eb-bb17-abe329485121
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.