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1. Introduction 

Tractors play a fundamental role in agriculture as the main 
power resource for operation with various add-on agriculture ma-
chinery. The most energy and labor intensive among agro-tech-
nological operations is soil plowing. The trend in a plow design 
favors tractors with substantial power [24, 26], but ultimately it is 
determined by the size and construction of the machinery satisfy-
ing the needs of smaller farms [19].

Optimal tractor and machinery parameter selection, as a func-
tion of various field operations, not only improves the economics of 
such activities, but also reduces exhaust pollution and other nega-
tive environmental effects. The power requirements and energy con-
sumption may be reduced through optimizing power characteristics 
and engine parameters [2, 3, 11, 31].  

The CO2 emissions may be reduced by minimizing idling 
states of the engine and maximizing the engine work load. The 
operational engine parameters are engine speed, transmission gear 
ratios and engine torque [1, 14]. The experience and reaction time 
of the tractor operator also play an important role in maintaining 
these parameters in optimal range [4, 18, 23, 28, 29] and  optimal 
engine utilization [4, 12, 21]. 

Monitoring the performance indexes of operational power 
in various conditions provides data of engine modes of opera-
tion and fuel consumption. Not many methods and mathemati-

cal power performance models as a function of field parameters 
exist.

In this paper we present our evaluation method and introduce the 
performance indexes of operational power performance obtained in 
various conditions. It includes the evaluation of power use of an agri-
culture tractor engine in various plowing operations and the results of 
a comparative study of power performance as a function of field size. 
Other studies [9, 10, 20] focus more on fuel and energy consumption 
efficiency and toxic exhaust emission characteristics. 

2. Methodology 

The study took place during the 2012 plowing season on the 
Agrofirma agricultural farm (Witkowo, Poland) for rapeseed sowing. 
The experimental setup included three fields (Fig. 1). The physical 
parameters of the three fields’ soils were measured at the time of the 
plowing operations and are included in Table 1 [17].

This paper presents a comparative study of power performance 
of a 230 kW tractor model John Deere 8330 subject to soil plowing 
operations on the three fields. The tractor was pulling a Lemken semi-
mounted reversible, full moldboard 7-furrows EuroDiamant plow unit 
combined with a Campbell soil compaction roller tiller. All operations 
involved the same one tractor operator reducing any comparative dis-
crepancy in experiment results.
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2. Analysis method

The operational parameters (the engine speed, torque and power, 
fuel consumption and GPS position) were monitored with digital sen-
sors with 1 Hz frequency using Siemens VDO -EDM 1404.01 meas-

uring system [7]. The readings were used 
to calculate nominal and operational power 
of the engine. There are many methods of 
finding engine torque Mo indirectly [5, 8, 
16, 22, 27, 32-34]. In our study, a method 
patented by the West Pomeranian Universi-
ty of Technology in Szczecin was utilized. 
In our view this method is unique and quite 
suitable for practical use in field operations 
[15, 16]. Other known methods focus more 
on theoretical analysis or represent labora-
tory experimental findings. In this study, 
the engine torque Mo parameter was evalu-
ated indirectly based on the measurement 
of fuel consumption and engine crankshaft 
rotations: 
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Mo   – engine torque in Nm,
g1000  – fuel consumption in dm3 per 1000  
     crankshaft revolutions,  
a, b, c, d – coefficients subject to the engine 
       type and rpm (Table 2),
Vfuel  – fuel consumption, dm3/min,
ns   – engine speed, rpm.

The values of torque were obtained in-
directly with appropriate coefficient units 
to satisfy equation (2).

Engine utilization was evaluated with:
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where:
EN  – engine utilization,
Nu – plowing operation engine power, kW,
Nnom – nominal engine power, kW,
Ut – engine plowing operation time in relation to total engine 

operation time, %.

Table 1. Soil Parameters 

Soil Soil
Layer

Field

A B C

Soil Gran-
ulation,

%

2 ≥ d >1

Tillage
Layer

    2.7

LFS

     1.5

FSL

     1.7

FSL

1 ≥ d > 0.5     7.9      6.2      6.4

0.5 ≥ d > 0.25   15.1     11.0     12.5

0.25 ≥ d > 0.1   33.2     31.6     31.1

0.1≥ d > 0.05   17.1     17.7     19.3

0.05 ≥ d > 0.02    8   14     10

0.02 ≥ d > 0.002  11   13     14

d ≤ 0.002     5     5       5

Soil Organic Matter Content, %    2.1 1.9   2.0

Soil Moisture (by weight), %
  0 - 10 cm
10 - 20 cm
20 - 30 cm

15.0   s=2.0
15.0   s=2.3
14.3   s=2.0

13.7   s=1.0
13.5   s=0.5
13.1   s=0.3

13.3   s=1.3
13.9   s=1.2
13.9   s=1.9

Soil Volume Density, g/cm3
  0 - 10 cm
10 - 20 cm
20 - 30 cm

1.35   s=0.10
1.57   s=0.14
1.57   s=0.10

1.31   s=0.15
1.57   s=0.04
1.52   s=0.03

1.44   s=0.15
1.62   s=0.06
1.65   s=0.07

Soil Compactness, kPa
  0 - 10 cm
10 - 20 cm
20 - 30 cm

  538  s=258
1183  s=463
2212  s=588

  535  s=192
1539  s=348
2423  s=533

  758  s=439
2459  s=683
3257  s=373

Soil Shear Stress, kPa
  0 - 10 cm
10 - 20 cm
20 - 30 cm

  24    s=10
  50    s=16
  56    s=11

  18    s=6
  35    s=6

    53    s=10

  18    s=4
  49    s=19
  67    s=15

Plow Operation Velocity, m/s  2.53  s=0.23  2.58  s=0.46  2.61  s=0.48

Operating Plow Depth, cm   25    s=2   22    s=2   25    s=3

Operating Plow Width, m 3.34   s=0.05 3.36   s=0.04 3.27   s=0.03
LFS - loamy fine sand, FSL - fine sandy loam, s-standard deviation, d - particle size

Fig. 1. Experimental Setup of three fields (based on Agrofirma geographical 
map)

Table 2. Engine coefficients a, b, c, d − dyno test bench verified [16]

Engine speed range 
ns, rpm

Coefficient values

a, Nm/dm9 b, Nm/dm6 c, Nm/dm3 d, Nm

< 950 −7⋅10−6 0.0042 1.3992 −1.1506

950–1250 −6⋅10−6 0.0040 1.3193 14.087

1250–1550 −8⋅10−6 0.0063 0.8354 37.374

1550–1850 −1⋅10−5 0.0070 0.9304 20.479

1850–2150 −1⋅10−5 0.0094 0.3923 50.361

> 2150 −7⋅10−6 0.0068 0.5357 59.126
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The engine actual torque values were obtained from (1) and (2). 
The measurements of relative time of engine operation are pre-

sented in Fig. 2, 3, 4 relative to total time of engine operation [6]  and 
based on (4):

 ( )
( ),

, 100%i j
i j

c

t
TD

t
= ⋅ , (4)

where:
TD(i, j) – Relative time of engine operation (Time Density), %,
i – Index of the engine speed coordinate with ∆ns = 100 rpm,
j – Index of the engine torque with ∆Mo = 50 Nm,
t(i, j) – time of operation at (i, j),
tc – total time of engine operation.

Since the comparison and interpretation of the TD distribution 
plots (Fig. 2, 3, 4) may not be straightforward, a statistical data clus-
tering (k-means full binding) method was used to obtain parameters 
for better quantitative comparison of effective utilization of the en-
gine power at selected points (ns, Mo). A program Statistica [30] with 
67450 measurement points was used to generate the results.

3. Results 

The measurements of relative time of 
engine operation as a function of engine 
torque and engine speed are presented in 
Fig. 2, 3 and 4. For better visualization of 
the relative time of engine operation, the 
plots for fields A, B and C are normal-
ized to show the measurements within 1% 
range of TD. 

Two engine operative states were con-
sidered: idle and field operation. A quan-
titative comparison of the time duration of the engine states was ob-

tained also using the statistical data clustering approach, with results 
shown in Fig. 5. Four clusters were obtained as a function of engine 
speed ns and torque Mo, as well as field size and the corresponding 
engine state of operation.

For fields A and B, the resulting clusters were comparatively close 
to each other, as opposed to the cluster locations of field C (Fig. 5). 
The A and B cluster location coordinates (associated with engine 
speed and torque) correspond to the engine plowing operation. For 
clusters variance analysis was performed. It showed strong difference 
between clusters (Table 3). 

Fig. 2. Relative time of engine operation on field A

Fig. 3. Relative time of engine operation on field B

Fig. 4. Relative time of engine operation on field C

Fig. 5. Engine operation clusters for fields A, B and C; A1, … C4 – cluster 
name, % – relative time of engine operation in a cluster

Table 3. Variance analysis for the clusters

Effect
Field A Field B Field C

F p-Value F p-Value F p-Value

ns 143565,8 0,00 41483,20 0,00 14324,31 0,00

Mo 140147,9 0,00 77110,79 0,00 14324,31 0,00

Number of cases 39833 20535 7082
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During the plowing state interval, the engine was generating 190-
195 kW, i.e. about 85% of nominal engine power. For fields A, B and 
C, the engine was generating 190-195 kW of power 75.2%, 68.8% and 
46.8% of total time of engine operation respectively. In the case of en-
gine idling state interval, the corresponding values were 14.9%, 15.6% 
and 25.8% (Fig. 5). The effective engine utilization EN obtained from 
(3) were accordingly for field A = 0.62, for B = 0.58 and for C = 0.39.

The coordinates of engine for both plowing and idling state in-
tervals for each field clustered within 200 rpm and 100 Nm ranges of 
engine speed and torque (Fig. 6). The interoperation or transient states 
spread over 600 rpm and 350 Nm ranges. 

A Pearson correlation coefficient was obtained to evaluate the 
functional relation of plowing vs. idling state share to the field size. 
Positive correlation (0.92) at R2 = 0,85 was attained for plowing state 
and strongly negative (−0.85) at R2 = 0,72 for idling.

4. Discussion
The plowing operations comprise 30% of tractor engine operation 

while its power is not fully utilized [13, 18]. Continuous monitoring 
and analysis of economy of agriculture activities contributes to the 

minimization of energy usage [25]. Engine torque monitoring repre-
sents one of the key parameters in such analysis.  Since its measure-
ment requires specialized instrumentation setup, various indirect ap-
proaches have been explored [5]. Many such studies have presented 
their results in a general matrix form and fuel consumption profiles. 
In the evaluation approach here, performance indexes of operational 
power performance in various conditions have been presented. Imple-
mented, they can contribute to optimal gear selection through visual 
display of actual engine power and to “gear up and throttle down” 
driving approach in transient engine states, possibly resulting in up 
to 20% fuel savings [4]. The actual engine utilization parameter may 
also be helpful in optimal tractor selection in terms of cost, as well as 
match of its engine power to target farm.

Our study, based on a theoretical model of engine optimal points 
of operation [4], implements a novel statistical data clustering and 
modern measurement technology approach. The time distributions of 
engine operation presented here confirm other studies [9, 10] validat-
ing our methodological approach. They may also help in modelling 
agriculture tractor engine load cycles [6], which in turn are used in 
evaluation of engine emissions. 

Conclusions:

The statistical data clustering approach to quantitative com-• 
parison of the effective time duration of the various engine 
modes of operation and fields used in this study enabled more 
precise evaluation of the actual power utilization of agriculture 
tractor engine, as a function of field size, than theoretical and 
simulation approaches.
The presented statistical approach may have practical applica-• 
tions as an optimization tool in a more effective utilization of 
various add-on agriculture machinery through a visualization 
driver support system for optimal gear selection.
A strong positive correlation was observed between the field • 
size and engine plowing state, while a negative correlation was 
observed in the case of idling engine state of operation.
The actual power utilization of agriculture tractor engine as a • 
function of field size was 0.62, 0.58 and 0.39 respectively for 
the three fields used in this study.

Fig. 6. Engine operationnal state clusters
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