PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A new mathematical model to calculate the equilibrium scour depth around a pier

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper sheds light on the formulation of a new equilibrium local scour depth equation around a pier. The total bed materials removed from the scour hole due to the force exerted by the fowing fuid after colliding with the pier in the fow feld are estimated. At the equilibrium condition, the shape of the scour hole around the pier may take any form, viz. linear, circular, parabolic, triangular, or combination of diferent shapes. To consider that, two functions are assumed at the stoss and the lee sides of the pier. The total volume of bed materials removed from the scour hole of an arbitrary shape at the stoss and the lee sides of the pier is obtained by integrating the two functions. The equilibrium scour depth is formed by applying the energy balance theorem. An example problem is illustrated and the results are compared with the equations presented by Melville and Coleman (Bridge scour. Water Resources Publication, Colorado, 2000) and HEC-18 (Richardson and Davis in Evaluating scour at bridges, HEC-18. Technical report no. FHWA NHI, 2001).
Czasopismo
Rocznik
Strony
181--187
Opis fizyczny
Bibliogr. 44 poz.
Twórcy
  • Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
  • Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
Bibliografia
  • 1. AASHTO, LRFD (2010) Bridge design specifications
  • 2. Afzal MS, Bihs H, Kamath A, Arntsen ØA (2015) Three-dimensional numerical modeling of pier scour under current and waves using level-set method. J Offshore Mech Arct Eng 137(3):032001. https://doi.org/10.1115/1.4029999
  • 3. Ahmad N, Bihs H, Chella MA, Arntsen ØA, Aggarwal A et al (2017) Numerical modelling of arctic coastal erosion due to breaking waves impact using REEF3D. In: The 27th international ocean and polar engineering conference. International Society of Offshore and Polar Engineers
  • 4. Arneson L, Zevenbergen L, Lagasse P, Clopper P (2012) Evaluating scour at bridges. HEC-18. Federal Highway Administration (FHWA)
  • 5. Bouratsis P, Diplas P, Dancey CL, Apsilidis N (2017) Quantitative spatio-temporal characterization of scour at the base of a cylinder. Water 9(3):227. https://doi.org/10.3390/w9030227
  • 6. Chabert J, Engeldinger P (1956) Study of scour around bridge piers. Technical report, prepared for the Laboratoire National d’Hydraulique
  • 7. Chang H (1988) Fluvial processes in river engineering. Wiley, New York
  • 8. Dey S (1995) Three-dimensional vortex flow field around a circular cylinder in a quasi-equilibrium scour hole. Sadhana 20(6):871–885. https://doi.org/10.1007/BF02745871
  • 9. Dey S (1996) Sediment pick-up for evolving scour near circular cylinders. Appl Math Model 20(7):534–539. https://doi.org/10.1016/0307-904X(95)00172-G
  • 10. Dey S (1997) Local scour at piers, part I: a review of developments of research. Int J Sediment Res 12(2):23–46
  • 11. Dey S (2014) Scour. In: Fluvial hydrodynamics, Springer, Berlin, pp. 563–639. https://doi.org/10.1007/978-3-642-19062-9_10
  • 12. Dey S, Bose S, Sastry G (1992a) Clear water scour at circular piers, part I: flow model. In: Proceedings of 8th conference on IAHR Asian and Pacific Division, pp 69–80
  • 13. Dey S, Bose S, Sastry G (1992b) Clear water scour at circular piers, part II: design formula. In: Proceedings of 8th conference on IAHR Asian and Pacific Division, pp 81–92
  • 14. Dey S, Bose SK (1994) Bed shear in equilibrium scour around a circular cylinder embedded in a loose bed. Appl Math Model 18(5):265–273. https://doi.org/10.1016/0307-904X(94)90334-4
  • 15. Dey S, Bose SK, Sastry GL (1995) Clear water scour at circular piers: a model. J Hydraul Eng 121(12):869–876. https://doi.org/10.1061/(ASCE)0733-9429(1995)121:12(869)
  • 16. Dey S, Raikar RV (2007) Characteristics of horseshoe vortex in developing scour holes at piers. J Hydraul Eng 133(4):399–413. https://doi.org/10.1061/(ASCE)0733-9429(2007)133:4(399)
  • 17. Ettema R, Melville BW, Constantinescu G (2011) Evaluation of bridge scour research: Pier scour processes and predictions. Citeseer
  • 18. Gioia G, Bombardelli FA (2005) Localized turbulent flows on scouring granular beds. Phys Rev Lett 95(1):014501
  • 19. Gioia G, Chakraborty P (2006) Turbulent friction in rough pipes and the energy spectrum of the phenomenological theory. Phys Rev Lett 96(4):044502
  • 20. Graf W, Istiarto I (2002) Flow pattern in the scour hole around a cylinder. J Hydraul Res 40(1):13–20. https://doi.org/10.1080/00221680209499869
  • 21. Hafez YI (2016) Mathematical modeling of local scour at slender and wide bridge piers. J Fluids. https://doi.org/10.1155/2016/4835253
  • 22. Harik I, Shaaban A, Gesund H, Valli G, Wang S (1990) United states bridge failures, 1951–1988. J Perform Constr Facil 4(4):272–277. https://doi.org/10.1061/(ASCE)0887-3828(1990)4:4(272)
  • 23. Kamojjala S, Gattu N, Parola A, Hagerty D (1994) Analysis of 1993 upper Mississippi flood highway infrastructure damage. In: Water resources engineering, ASCE, pp 1061–1065
  • 24. Kattell J, Eriksson M (1998) Bridge scour evaluation: screening, analysis, and countermeasures. Technical report, USDA Forest Service, San Dimas Technology and Development Center
  • 25. Khaple S, Hanmaiahgari PR, Gaudio R, Dey S (2017) Interference of an upstream pier on local scour at downstream piers. Acta Geophys 65(1):29–46. https://doi.org/10.1007/s11600-017-0004-2
  • 26. Kothyari UC, Hager WH, Oliveto G (2007) Generalized approach for clear-water scour at bridge foundation elements. J Hydraul Eng 133(11):1229–1240. https://doi.org/10.1061/(ASCE)0733-9429(2007)133:11(1229)
  • 27. Lagasse PF (2007) Countermeasures to protect bridge piers from scour, vol 593, Transportation Research Board
  • 28. Lança RM, Fael CS, Maia RJ, Pêgo JP, Cardoso AH (2013) Clear-water scour at comparatively large cylindrical piers. J Hydraul Eng 139(11):1117–1125. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000788
  • 29. Manes C, Brocchini M (2015) Local scour around structures and the phenomenology of turbulence. J Fluid Mech 779:309–324. https://doi.org/10.1017/jfm.2015.389
  • 30. Melville BW, Coleman SE (2000) Bridge scour. Water Resources Publication, Colorado
  • 31. Melville BW, Raudkivi AJ (1977) Flow characteristics in local scour at bridge piers. J Hydraul Res 15(4):373–380. https://doi.org/10.1080/00221687709499641
  • 32. Mutlu Sumer B (2007) Mathematical modelling of scour: a review. J Hydraul Res 45(6):723–735. https://doi.org/10.1080/00221686.2007.9521811
  • 33. Nurtjahyo P, Chen H, Briaud J, Li Y, Wang J (2002) Bed shear stress around rectangular pier: numerical approach. In: First international conference on scour of foundations international society of soil mech and foundations
  • 34. Olsen NR, Melaaen MC (1993) Three-dimensional calculation of scour around cylinders. J Hydraul Res 119(9):1048–1054. https://doi.org/10.1061/(ASCE)0733-9429(1993)119:9(1048)
  • 35. Raikar R, Dey S (2005a) Scour of gravel beds at bridge piers and abutments, vol 158, Thomas Telford Ltd, pp 157–162
  • 36. Raikar RV, Dey S (2005b) Clear-water scour at bridge piers in fine and medium gravel beds. Can J Civ Eng 32(4):775–781. https://doi.org/10.1139/l05-022
  • 37. Raikar RV, Dey S (2008) Kinematics of horseshoe vortex development in an evolving scour hole at a square cylinder. J Hydraul Res 46(2):247–264. https://doi.org/10.1080/00221686.2008.9521859
  • 38. Richardson E, Davis S (2001) Evaluating scour at bridges, HEC-18. Technical report, Rep. No. FHWA NHI
  • 39. Roulund A, Sumer BM, Fredsøe J, Michelsen J (2005) Numerical and experimental investigation of flow and scour around a circular pile. J Fluid Mech 534:351–401. https://doi.org/10.1017/S0022112005004507
  • 40. Salaheldin TM, Imran J, Chaudhry MH (2004) Numerical modeling of three-dimensional flow field around circular piers. J Hydraul Eng 130(2):91–100. https://doi.org/10.1061/(ASCE)0733-9429(2004)130:2(91)
  • 41. Shatanawi KM, Aziz NM, Khan AA (2008) Frequency of discharge causing abutment scour in South Carolina. J Hydraul Eng 134(10):1507–1512. https://doi.org/10.1061/(ASCE)0733-9429(2008)134:10(1507)
  • 42. Sheppard DM, Odeh M, Glasser T (2004) Large scale clear-water local pier scour experiments. J Hydraul Eng 130(10):957–963. https://doi.org/10.1061/(ASCE)0733-9429(2004)130:10(957)
  • 43. Wardhana K, Hadipriono FC (2003) Analysis of recent bridge failures in the united states. J Perform Constr Facil 17(3):144–150. https://doi.org/10.1061/(ASCE)0887-3828(2003)17:3(144)
  • 44. Yang Y, Qi M, Li J, Ma X (2018) Evolution of hydrodynamic characteristics with scour hole developing around a pile group. Water 10(11):1632
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e09a1bea-f15d-4257-a2c2-ef502f654152
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.