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Abstract. In this paper it is obtained, through variational methods and
sub-supersolution arguments, existence and multiplicity of solutions for a nonhomoge-
neous problem which arise in several branches of science such as chemical reactions,
biophysics and plasma physics. Under a general hypothesis it is proved an existence re-
sult and multiple solutions are obtained by considering an additional natural condition.
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1. INTRODUCTION

The goal of this manuscript, which is motivated by [7, 8, 12, 17], consists in study
nonnegative solutions for the nonhomogeneous p&q-Laplacian type problem

{
−div(a(|∇u|p)|∇u|p−2∇u) = b(x)uα−1 + f(x, u) in Ω,

u = 0 on ∂Ω,
(1.1)

where Ω ⊂ RN is a bounded domain with smooth boundary, 2 ≤ p < N, N ≥ 3,
f : Ω× [0, +∞) → R is a continuous function, 1 ≤ α and a : R+ → R+ is a C1 function
with:

(A1) there are constants ki > 0, i = 1, . . . , 4, and 2 ≤ p ≤ q < N satisfying

k1tp + k2tq ≤ a(tp)tp ≤ k3tp + k4tq, for all t ≥ 0,

(A2) the function t 7→ a(tp)tp−2 is increasing,
(A3) the function t 7→ A(tp) is strictly convex, where A(t) =

∫ t

0 a(s) ds,
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(A4) there are constants θ and µ such that θ ∈ (q, q∗), µp < q < θ and

a(t) t ≤ µA(t), for all t ≥ 0.

Regarding the nonlinearity in (1.1) it will be considered the hypotheses below.
(H) b ∈ L∞(Ω) and b(x) > 0 a.e. in Ω;
(f1) There is δ > 0 with f(x, t) ≥ b(x)(1 − tα−1), for all 0 ≤ t ≤ δ, a.e. in Ω;
(f2) There exists r > 1 such that |f(x, t)| ≤ b(x)(1 + |t|r−1), for all t ≥ 0, a.e. in Ω.

Since Ω is bounded and p < q we have that W 1,q
0 (Ω) ∩ W 1,p

0 (Ω) = W 1,q
0 (Ω). Thus,

in order to obtain solutions for (1.1) it will be considered the space W 1,q
0 (Ω) equipped

with the norm
∥u∥1,q =

( ∫

Ω

|∇u|qdx
)1/q

.

We will consider that u ∈ W 1,q
0 (Ω) is a weak solution for (1.1) if u(x) ≥ 0 a.e. in Ω

and
∫

Ω

a(|∇u|p)|∇u|p−2∇u∇φ =
∫

Ω

a(x)uα−1φ +
∫

Ω

f(x, u)φ, for all φ ∈ W 1,q
0 (Ω).

By considering ∥ · ∥∞ the norm in the space L∞(Ω) it is possible, via
sub-supersolutions and minimization arguments in convex sets, to prove the existence
result below.
Theorem 1.1. Suppose that the hypotheses (H), (A1)–(A4) and (f1)–(f2) hold. The
problem (1.1) has a solution for ∥b∥∞ small enough.

If one consider the additional condition

(f3) There are r < q∗ := Nq

(N − q) and α ≤ q or it holds simultaneously that q < α

and there is t0 > 0 with

0 < θF (x, t) ≤ tf(x, t), a.e. in Ω for all t ≥ t0,

where θ is provided in (A4) and F (x, t) =
t∫

0

f(x, τ) dτ .

It is possible to obtain the next result.
Theorem 1.2. Suppose that the hypotheses (H), (A1)–(A4) and (f1)–(f3) hold. The
problem (1.1) admits at least two nonnegative weak solutions for ∥b∥∞ small enough.

Partial Differential Equations with the nonhomogeneous p&q-Laplacian type op-
erator in (1.1) arose due do its applicability in several relevant models in chemical
reaction design, biophysics and plasma physics which are driven by the parabolic
reaction-diffusion problem

ut = div[(|∇u|p−2 + |∇u|q−2)∇u] + c(x, u).
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The relevance of these equations stems from their ability to accurately describe
complex phenomena that occur in these fields. For example, chemical reaction design
involves the study of how chemical reactions occur and how they can be manipulated
to achieve desired outcomes. Similarly, biophysics deals with the study of the physical
processes that occur within living organisms. Many of these processes involve the
diffusion of particles, such as molecules and ions, which can be described using parabolic
reaction-diffusion systems. Plasma physics involves the study of ionized gases and
their interactions with electromagnetic fields. Such field has applications in a wide
range of areas, from fusion energy to space propulsion. Lastly, plasma physics involves
the study of ionized gases and their interactions with electromagnetic fields. This field
has applications in a wide range of areas, from fusion energy to space propulsion.

In the described applications, the function u provides the concentration, the
divergent term allows to obtain information regarding the diffusion considered in
the model; the term c describes mathematically the reaction and provide information
related to the source and the the loss in the process. Typically in applications in
Chemistry and Biology, the reaction function c(x, u) has polynomial behavior in the
term u and has variable coefficients. For more details on p&q-Laplacian problems we
refer to [2–6,9, 13–16,20].

Regarding the mathematical viewpoint, the main motivations for (1.1) are [12]
and [18] where it was considered the operator in (1.1) and an equation was studied
in the case α ≡ 2 with an anisotropic operator respectively. We also mention the
references [7, 17]. With respect to the obtained results, we highlight that Theorem 1.1
permits to consider nonlinearities with arbitrary growth. Such result allows to consider
problems with supercritical and critical growth, which are particularly challenging
aspects in the study of nonlinear elliptic equations. Theorem 1.2 asserts the existence of
multiple solutions for a wide class of nonlinearities problems, subject to certain natural
additional conditions. The results mentioned represent an improvement, particularly
for the Laplacian operator, over the recent reference [18]. The approach considered
to study (1.1) is based on sub-supersolution arguments and variational methods. An
important mathematical difficulty that arise in (1.1) is the lack of homogeneity of the
operator which imply that sub-supersolution techniques cannot be directly applied.
We point out that that the results of this manuscript allow to consider the nonlinearity

m(x, t) =
{

(1 − tα−1)b(x), 0 ≤ t ≤ s0,

((1 − sα−1
0 ) + (t − s0)r−1)b(x), t > s0,

in the right-hand side of (1.1), where 0 < s0 < 1 is fixed and 1 ≤ α < q⋆ with α ̸= q
and µp < q < r where µ, p and q are provided in (A4).

The operator considered in (1.1) allows to consider a wide class of problems.
Example 1.3. If a ≡ 1, q = p, k1 + k2 = 1 and k3 + k4 = 1 the problem (1.1) becomes

{
−∆pu = b(x)uα−1 + f(x, u) in Ω,

u = 0 on ∂Ω,

where ∆pu := div(|∇u|p−2∇u).
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Example 1.4. Considering a(t) = 1 + t
q−p

p and k1 = k2 = k3 = k4 = 1 we have
{

−∆pu − ∆qu = b(x)uα−1 + f(x, u) in Ω,

u = 0 on ∂Ω.

Example 1.5. Choosing a(t) = 1 + 1

(1+t)
p−2

p

, q = p, k1 + k2 = 1 and k3 + k4 = 2, we

obtain the problem




−div
(

|∇u|p−2∇u + |∇u|p−2∇u

(1+|∇u|p)
p−2

p

)
= b(x)uα−1 + f(x, u) in Ω,

u = 0 on ∂Ω,

Example 1.6. In the case a(t) = 1 + t
q−p

p + 1

(1+t)
p−2

p

, k1 = k2 = k4 = 1 and k3 = 2

we obtain




−∆pu − ∆qu − div
(

|∇u|p−2∇u

(1+|∇u|p)
p−2

p

)
= b(x)uα−1 + f(x, u) in Ω,

u = 0 on ∂Ω.

2. AUXILIARY RESULTS

In what follows we provide some results which will be needed for our purposes.
Lemma 2.1 ([8, Lemma 2.5]). If (A1) holds and u ∈ W 1,q

0 (Ω) is a solution of the
problem {

−div(a(|∇u|p)|∇u|p−2∇u) = f(x) in Ω,

u = 0 on ∂Ω,

such that f ∈ Lr(Ω) with r > q∗/(q∗ − q), then it holds that u ∈ L∞(Ω) with
∥u∥∞ ≤ C∥f∥

1
q−1
r |Ω|ι, where | · | is the Lebesgue measure and ι and C are constants

which does not depend on the function u.

Lemma 2.2 ([10, Lemma 2.1]). Suppose that (A1)–(A2) hold. If h ∈ (W 1,q
0 (Ω))′, then

the problem {
−div(a(|∇u|p)|∇u|p−2∇u) = h(x) in Ω,

u = 0 on ∂Ω,

has an unique solution u ∈ W 1,q
0 (Ω).

Lemma 2.3 ([11, Lemma 2.2]). Suppose that (A1)–(A2) hold. If u, v ∈ W 1,q
0 (Ω) satisfy

{
−div(a(|∇u|p)|∇u|p−2∇u) ≤ −div(a(|∇v|p)|∇u|p−2∇u) in Ω,

u ≤ v on ∂Ω,

then u(x) ≤ v(x) a.e. in Ω.
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3. PROOF OF THEOREM 1.1

Below we present the notion of sub-supersolution that will be considered and a lemma
related with such functions.

We say that (u, u) ∈ (W 1,q
0 (Ω)∩L∞(Ω))×(W 1,q

0 (Ω)∩L∞(Ω)) is a sub-supersolution
pair for (1.1) if u(x) ≤ u(x) a.e in Ω and the inequalities

∫

Ω

a(|∇u|p)|∇u|p−2∇u∇φ ≤
∫

Ω

b(x)uα−1φ +
∫

Ω

f(x, u)φ,

∫

Ω

a(|∇u|p)|∇u|p−2∇u∇φ ≥
∫

Ω

b(x)uα−1φ +
∫

Ω

f(x, u)φ,

(3.1)

hold for all φ ∈ W 1,q
0 (Ω), with φ(x) ≥ 0 a.e in Ω.

The result below assures the existence of a sub-supersolution pair for (1.1) with
∥b∥∞ small enough.

Lemma 3.1. Consider the hypotheses (H) and (f1)–(f2). Then, there is η > 0 such
that (1.1) has a sub-supersolution pair (u, u) ∈ (W 1,q

0 (Ω)∩L∞(Ω))×(W 1,q
0 (Ω)∩L∞(Ω)),

satisfying ∥u∥∞ ≤ δ, where δ was provided in (f1), for ∥b∥L∞(Ω) < η.

Proof. From Lemmas 2.1 and 2.2 there are unique nonnegative functions u, u ∈
W 1,q

0 (Ω) ∩ L∞(Ω) for the problems

{
−div(a(|∇u|p)|∇u|p−2∇u) = b(x) in Ω,

u = 0 on ∂Ω
{

−div(a(|∇u|p)|∇u|p−2∇u) = 1 + b(x) in Ω,

u = 0 on ∂Ω,

(3.2)

respectively such that ∥u∥∞ ≤ C∥b∥
1

q−1
∞ |Ω|ι, ∥u∥∞ ≤ C∥1 + b∥

1
q−1
∞ |Ω|ι, where the

constants C and ι are provided by Lemma 2.1. Moreover, it is possible to choose η > 0,
depending only on C and ι such that ∥u∥∞ ≤ δ/2 and ∥b∥∞ max{∥u∥α−1

∞ , ∥u∥r−1
∞ } ≤ 1

for ∥b∥∞ < η. By using Lemma 2.3 and (3.2) we obtain that 0 < u(x) ≤ u(x) a.e. in Ω.
Consider a function φ ∈ W 1,q

0 (Ω) with φ(x) ≥ 0 a.e. in Ω. Combining (f1) and
(3.2) it follows that

∫

Ω

a(|∇u|p)|∇u|p−2∇u∇φ −
∫

Ω

b(x)uα−1φ −
∫

Ω

f(x, u)φ

≤
∫

Ω

b(x)φ −
∫

Ω

b(x)uα−1φ −
∫

Ω

(1 − uα−1)b(x)φ = 0.
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From (f2), (3.2) and the choice of η we have
∫

Ω

a(|∇u|p)|∇u|p−2∇u∇φ −
∫

Ω

b(x)uα−1φ −
∫

Ω

f(x, u)φ

≥
∫

Ω

(1 + b(x))φ − b(x)uα−1φ − b(x)(1 + |u|r−1)φ

≥
∫

Ω

(1 − ∥b∥∞ max{∥u∥α−1
∞ , ∥u∥r−1

∞ })φ ≥ 0,

By using Lemma for all φ ∈ W 1,q
0 (Ω) with φ(x) ≥ 0 a.e. in Ω.

Proof of Theorem 1.1. Consider u, u ∈ W 1,q
0 (Ω) the functions given in Lemma 3.2.

Define the truncated function below

w(x, t) :=





f(x, u(x)) + uα−1b(x), t > u(x),
f(x, t) + tα−1b(x), u(x) ≤ t ≤ u(x),
f(x, u(x)) + uα−1b(x), t < u(x),

(3.3)

for (x, t) ∈ Ω × R and the equation
{

−div(a(|∇u|p)|∇u|p−2∇u) = w(x, u) in Ω,

u = 0 on ∂Ω,

The C1 energy functional associated to the previous problem is

J(u) := 1
p

∫

Ω

A(|∇u|p) −
∫

Ω

W (x, u), u ∈ W 1,q
0 (Ω),

with W (x, t) :=
∫ t

0 w(x, τ)dτ. From (A3), (A5) and the boundedness of h we ontain
that J is a sequentially weakly lower semicontinuous and coercive functional. Define

K := {u ∈ W 1,q
0 (Ω); u(x) ≤ u(x) ≤ u(x) a.e in Ω}.

We have that K is convex and closed, which provides that it is weakly closed in W 1,q
0 (Ω).

Therefore J
∣∣
K attains its infimum in some u0 ∈ K. A similar reasoning with respect

to [19, Theorem 2.4] provides that J ′(u0) = 0, which finishes the proof.

4. PROOF OF THEOREM 1.2

Consider u ∈ W 1,q
0 (Ω) the function provided in Lemma 3.2, the function

z(x, t) =
{

f(x, t) + tα−1b(x), t ≥ u(x),
f(x, u(x)) + u(x)α−1

b(x), t < u(x)
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and the problem
{

−div(a(|∇u|p)|∇u|p−2∇u)u = z(x, u) in Ω,

u = 0 on ∂Ω,
(4.1)

whose the associated C1 energy functional is

L(u) := 1
p

∫

Ω

A(|∇u|p) −
∫

Ω

Z(x, u), u ∈ W 1,q
0 (Ω), (4.2)

with Z(x, t) :=
∫ t

0 z(x, τ)dτ.

Lemma 4.1. If q < α or it holds simultaneously that α ≤ q and ∥b∥∞ is small enough,
then the functional L satisfies the Palais–Smale condition.

Proof. Let (un) ⊂ W 1,q
0 (Ω) be a sequence with L′(un) → 0 and such that L(un) → c

for some c ∈ R.
Initially it will be considered the case q < α. Note that (f3) is also true with θ′ > 0

satisfying q < θ′ < min{θ, α}. Thus, from (f2)–(f3), the boundedness of u, the Sobolev
embeddings W 1,q

0 (Ω) ↪→ L1(Ω), W 1,q
0 (Ω) ↪→ Lα(Ω) and W 1,q

0 (Ω) ↪→ Lr(Ω), we obtain
positive constants Ci, i = 1, 2, 3, such that

C1 + C2∥un∥1,q ≥ L(un) − 1
θ′ L′(un)un

≥
(

1
µp

− 1
θ′

)
k2∥un∥q

1,q +
∫

{un≥u}

(
1
θ′ − 1

α

)
b(x)uα

n − C3∥un∥1,q

≥
(

1
µp

− 1
θ′

)
k2∥un∥q

1,q − C3∥un∥1,q,

which imply the boundedness of (un) in W 1,q
0 (Ω).

With respect to the case α < q note that (f2), (f3), the boundedness of u and the
Sobolev embeddings provide

C1 + C2∥un∥1,q ≥ L(un) − 1
θ

L′(un)un

≥
(

1
µp

− 1
θ

)
k2∥un∥q

1,q − C4

∫

Ω

|un|α − C3∥un∥1,q

≥
(

1
µp

− 1
θ

)
k2∥un∥q

1,q − C5∥b∥∞∥un∥α
1,q − C3∥un∥1,q,

(4.3)

for positive constants Ci, i = 1, . . . , 5, which do not depend on n ∈ N. Since
α < q, it follows the boundedness of (un) in W 1,q

0 (Ω). If α = q, the boundedness of
the sequence (un) in W 1,q

0 (Ω) follows by considering ∥b∥∞ small enough such that
((µp)−1 − θ−1 − C5∥b∥∞) > 0.
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Thus in both cases we obtain up to a subsequence, that




un ⇀ u in W 1,q
0 (Ω),

un(x) → u(x) a.e. in Ω,

un → u in Ls(Ω), 1 ≤ s < q∗
(4.4)

for some u ∈ W 1,q
0 (Ω). Applying (4.4), the Lebesgue Dominated Convergence Theorem

and the inequality (see [12, p. 515])

C|x − y|p ≤ ⟨a(|x|p)x − a(|y|p)y, x − y⟩ for all x, y ∈ RN , (4.5)

where C > 0 is a constant which does not depend on x, y ∈ RN and ⟨·, ·⟩ denotes the
usual inner product in RN , we get

C∥∇un − ∇u∥p
1,p ≤

∫

Ω

⟨a(|∇u|p)∇u − a(|∇un|p)∇un, ∇un − ∇u⟩ = on(1),

which imply un → u in W 1,p
0 (Ω). From (A1) we obtain that

k1tp + p

q
k2tq ≤ A(tp) ≤ k3tp + p

q
k4tq, for all t ≥ 0. (4.6)

We have, up to a subsequence, that |∇un| ≤ h for some h ∈ Lp(Ω). From (A2)–(A3)
it follows that

A(|∇un − ∇u|p) ≤ C(A(|h|p) + A(|∇u|p)
for some constant C > 0 and all n ∈ N. Thus, from Lebesgue Dominated Convergence
Theorem we obtain that ∫

Ω

A(|∇un − ∇u|p) → 0. (4.7)

We have from (4.6) that

k1

∫

Ω

|∇un − ∇u|p + p

q
k2

∫

Ω

|∇un − ∇u|q ≤
∫

Ω

A(|∇un − ∇u|p).

Thus, it follows from (4.7) that un → u in W 1,q
0 (Ω), which proves the result.

The Mountain Pass Geometry is obtained below for the functional L defined
in (4.2).

Lemma 4.2. For ∥b∥L∞(Ω) small enough the claims below are true.

(i) There are constants σ and R with R > ∥u∥, such that

L(u) < 0 < σ ≤ inf
u∈∂BR(0)

L(u).

(ii) There is e ∈ W 1,q
0 (Ω) \ B2R(0) satisfying L(e) < σ.
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Proof. Since p > 1, it follows that L(u) < 0. Let u ∈ W 1,q
0 (Ω) be a function. From

the Sobolev embeddings W 1,q
0 (Ω) ↪→ Lα(Ω), W 1,q

0 (Ω) ↪→ Lr(Ω) and W 1,q
0 (Ω) ↪→ L1(Ω)

we have

L(u) ≥ K1∥u∥q
1,q − K2∥u∥1,q − K3∥b∥∞(∥u∥α

1,q + ∥u∥r
1,q),

for constants Ki > 0, i = 1, 2, 3. If necessary, consider a smaller ∥b∥∞ such that
∥u∥1,q < 1, which is possible by applying the function φ = u in the first inequality of
(3.1) and using Lemma 2.1.

Fix σ > 0 and consider R ≥ 1 > ∥u∥ large enough satisfying K1Rq − K2R ≥ 2σ.
Decreasing ∥b∥∞ such that K2∥b∥∞(Rα + Rr) ≤ σ, we obtain L(u) ≥ σ for all
u ∈ W 1,q

0 (Ω) with ∥u∥ = R, which provides (i).
With respect to the second part note that (f3) and the inequality q < θ imply that

L(tu) ≤ C1tq − C2tα − C3tθ + C4 < 0

for some positive constants Ci, i = 1, . . . , 4, and t > 0 large enough.

Proof of Theorem 1.2. Consider u, u ∈ W 1,q
0 (Ω) the functions given in Lemma 3.2 and

consider u1 ∈ W 1,q
0 (Ω) the solution of the problem (1.1) obtained in Theorem 1.1.

Recall that u1 minimizes J
∣∣
K, where

K = {u ∈ W 1,q
0 (Ω); u(x) ≤ u(x) ≤ u(x) a.e. in Ω}. (4.8)

Applying Lemma 4.1 and 4.2 we obtain that the conditions of the Mountain Pass
Theorem [1, Theorem 2.1] are satisfied. Therefore,

l := inf
γ∈Λ

max
t∈[0,1]

L(λ(t)),

where

Λ := {λ ∈ C([0, 1], W 1,q
0 (Ω)); λ(0) = u, λ(1) = e},

is a critical value of the functional L, i.e., L′(u2) = 0 and L(u2) = l, for u2 ∈ W 1,q
0 (Ω).

The definition of w provided in (3.3) imply J(u) = L(u) for

u ∈ {h ∈ W 1,q
0 (Ω); 0 ≤ h(x) ≤ u(x) a.e. in Ω}.

Hence L(u) = J(u) and J(u1) = L(u1) = infu∈K J(u). Recall from the proof of
Lemma 4.2 that L(u) < 0. Thus, it follows that if u2(x) ≥ u(x) a.e. in Ω, then we will
have that (1.1) has two solutions u1, u2 ∈ W 1,q

0 (Ω) with L(u1) ≤ L(u) < 0 < β ≤ l =
L(u2), with σ > 0 provided in Lemma 4.2.
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Note that the inequality u2(x) ≥ u(x) a.e. in Ω holds. In fact, by applying in (4.1)
the test function (u − u2)+ ∈ W 1,q

0 (Ω) we get
∫

Ω

a(|∇u2|p)|∇u2|p−2∇u2∇(u − u2)+

=
∫

{u2<u}

z(x, u2)(u − u2)+

=
∫

{u2<u}

(f(x, u(x)) + b(x)u(x)α−1)(u − u2)+

≥
∫

Ω

a(|∇u|p)|∇u|p−2∇u∇(u − u2)+.

Using (4.5), (4.6) and the previous inequality we have (u − u2)+(x) = 0 a.e. in Ω,
which finishes the proof of the claim.
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