PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of selected Friction Stir Welding parameters on mechanical properties of joints

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wpływ wybranych parametrów zgrzewania tarciowego na właściwości mechaniczne spoiny
Języki publikacji
EN
Abstrakty
EN
The article discusses the basic issues related to the technology of friction stir welding (FSW). A short description of technology is provided. The following section provides the analysis of effect of technological parameters (tool rotation and welding speed) on the mechanical properties of the prepared joint (strength, ductility, microhardness). In both cases the analysis refers to aluminum alloys (6056 and AA2195-T0). The comparative analysis showed the phenomenon of the increase in weld strength along with the increase in the rotational speed of the tool during welding. Similarly, with the increase in welding speed, an increase in weld strength was observed. Some exceptions have been observed from the above relations, as described in the article. In addition, examples of material hardness distribution in the joint are presented, indicating their lack of symmetry, caused by the rotational movement of the tool. The analyses were performed basing on the literature data.
PL
W artykule przedstawiono podstawowe zagadnienia związane z wpływem wybranych parametrów technologii zgrzewania tarciowego (prędkość obrotowa i liniowa narzędzia) na właściwości mechaniczne gotowej spoiny, ze szczególnym uwzględnieniem zależności naprężenie-odkształcenie i twardości materiału.
Twórcy
  • Kielce University of Technology, Faculty of Civil Engineering and Architecture, Kielce, Poland
autor
  • Kielce University of Technology, Faculty of Civil Engineering and Architecture, Kielce, Poland
autor
  • Kielce University of Technology, Faculty of Civil Engineering and Architecture, Kielce, Poland
Bibliografia
  • 1. W.M. Thomas, “Friction stir butt welding”, GB patent 9125978, 6.12.1991. International Patent Application PCT/GB92/02203. 1991.
  • 2. http://robotics.engr.wisc.edu/cgi-bin/wikiwp/wpcontent/uploads/2011/11/frictionStirWelding_detailSchematic.png.
  • 3. P.G. Kossakowski, “Stress modified critical strain criterion for S235JR steel at low initial stress triaxiality”, Journal of Theoretical and Applied Mechanics 52, 4: 995-1006, 2014.
  • 4. P.G. Kossakowski, “Experimental determination of the void volume fraction for S235JR steel at failure in the range of high stress triaxialities”, Archives of Metallurgy and Materials 62, 1: 167-172, 2017.
  • 5. W. Wciślik, “Numerical simulation of void nucleation in S355 steel”, Solid State Phenomena 250: 244-249, 2016.
  • 6. W. Wciślik, “Experimental determination of critical void volume fraction fF for the Gurson Tvergaard Needleman (GTN) model”, Procedia Structural Integrity 2:1676-1683, 2016.
  • 7. https://www.twi-global.com/technical-knowledge/job-knowledge/friction-stir-welding-147/.
  • 8. À. Meilinger, I. Török, “The importance of friction stir welding tool”, Production Processes and Systems 6, 1:25-34, 2013.
  • 9. K. Ullegaddi, H. Murthy, R.N. Harsha, Manjunatha, “Friction stir welding tool design and their effect on welding of AA-6082 T6”, Materials Today: Proceedings 4, 8: 7962-7970, 2017.
  • 10. P. Sahlot, K. Jha, G.K. Dey, A. Arora, “Wear-induced changes in FSW tool pin profile: effect of process parameters”, Metallurgical and Materials Transactions A 49: 2139-2150, 2018.
  • 11. S. Amini, M.R. Amiri, A. Barani, “Investigation of the effect of tool geometry on friction stir welding of 5083-O aluminum alloy”, The International Journal of Advanced Manufacturing Technology 76: 255-261, 2015.
  • 12. S. Eslamia, T. Ramosa, P.J. Tavaresa, P.M.G.P. Moreiraa, “Effect of friction stir welding parameters with newly developed tool for lap joint of dissimilar polymers”, Procedia Engineering 114: 199-207, 2015.
  • 13. K.P. Yuvaraj, P. Ashoka Varthanan, C. Rajendran, “Effect of friction stir welding parameters on mechanical and micro structural behaviour of AA7075-T651 and AA6061 dissimilar alloy joint”, International Journal of Computational Materials Science and Surface Engineering 7, 2: 130-149, 2018.
  • 14. P. Cavaliere, G. Campanile, F. Panella, A. Squilacce, “Effect of welding parameters on mechanical and microstructural properties of AA6056 joints produced by Friction Stir Welding”, Journal of Materials Processing Technology 180: 263-270, 2006.
  • 15. H.S. Lee, J.H. Yoon, J.T. Yoo, K. NO, “Friction stir welding process of aluminum-lithium alloy 2195”, Procedia Engineering 149: 62-66, 2016.
  • 16. C.G. Rhodes, M.W. Mahoney, W.H. Bingel, R.A. Spurling, C.C. Bampton, “Effects of friction stir welding on microstructure of 7075 aluminium”, Scripta Materialia 36: 69-75, 1997.
  • 17. R.S. Mishra, H. Sidhar, “Friction stir welding of 2xxx aluminum alloys including Al-Li alloys”, Elsevier, 2017.
  • 18. R. Kaibyshev, “Dynamic recrystallization in magnesium alloys”, in: C. Bettles, M. Barnett, eds. Advances in Wrought Magnesium Alloys, Fundamentals of Processing, Properties and Applications, Woodhead Publishing, Cambridge: 186-225, 2012.
  • 19. Y.H. Wang, J.M. Kang, Y. Peng, H.W. Zhang, T.S. Wang, X. Huang, “Observation of simultaneous increase in strength and ductility by grain refinement in a Fe-34.5Mn-0.04C steel”, IOP Conference Series: Materials Science and Engineering 219, 1: 1-5, 2017.
  • 20. P. Schempp, C.E. Cross, R. Häcker, A. Pittner, M. Rethmeier, “Influence of grain size on mechanical properties of aluminium GTA weld metal”, Welding in the World 57: 293-304, 2013.
  • 21. R.K. Mahidhara, “Effect of grain size on the superplastic behavior of a 7475 aluminum alloy”, Journal of Materials Engineering and Performance 4, 6: 674-678, 1995.
  • 22. L.E. Murr, G. Liu, J.C. McClure, “A TEM study of precipitation and related microstructures in friction-stir-welded 6061 aluminium”, Journal of Materials Science 33, 5: 1243-1251, 1998.
  • 23. G.M.F. Essa, H.M. Zakria, T.S. Mahmoud, T.A. Khalifa, “Microstructure examination and microhardness of friction stir welded joint of (AA7020-O) after PWHT”, HBRC Journal 14, 1: 22-28, 2018.
  • 24. S.A Khodir, T. Shibayanagi, M. Naka, “Control of hardness distribution in friction stir welded AA2024-T3 aluminum alloy”, Materials Transactions 47, 6: 1560-1567, 2006.
  • 25. W. Tang, J. Chen, X. Yu, D.A. Frederick, Z. Feng, “Heat input and post weld heat treatment effects on reduced-activation ferritic/martensitic steel friction stir welds”, in: R.S. Mishra, M.W. Mahoney, Y. Sato, Y. Hovanski, eds. Friction Stir Welding and Processing VIII, Springer, Cham: 83-87, 2015.
  • 26. PN-EN 1999-1-1:2011 Eurokod 9 - Projektowanie konstrukcji aluminiowych. Część 1-1: Reguły ogólne.
  • 27. I. Kalemba, D. Miara, M. Kopyściański, K. Krasnowski, "Charakterystyka złączy stopów aluminium serii 5xxx i 7xxx wykonanych metodą zgrzewania tarciowego z mieszaniem materiału", Przegląd Spawalnictwa 87, 2: 30-36, 2015.
  • 28. A. Pietras, B. Rams, A. Węglowska, "Zgrzewanie tarciowe metodą FSW stopów aluminium serii 6000", Archiwum Technologii Maszyn i Automatyzacji 27, 1: 93-102, 2007.
  • 29. A. Pastor, H.G. Svoboda, “Time-evolution of Heat Affected Zone (HAZ) of Friction Stir Welds of AA7075- T651” Journal of Materials Physics and Chemistry 1, 4: 58-64, 2013, doi: 10.12691/jmpc-1-4-1.
  • 30. M.A. Abdelrahman, M.M. Ghoneim, M.E. Abdelazim, M.M.R. El-Kouss, N.A. Abdelraheem, "The effect of FSW tool geometry on AA6061-T6 weldments", Arab Journal of Nuclear Sciences and Applications 45, 2: 407-418, 2012.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e08c1f5b-6a41-4ed6-9fc1-b048d2e0cf6b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.