PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Offline-online pattern recognition for enabling time series anomaly detection on older NC machine tools

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Intelligent IoT functions for increased availability, productivity and component quality offer significant added value to the industry. Unfortunately, many old machines and systems are characterized by insufficient, inconsistent IoT connectivity and heterogeneous parameter naming. Furthermore, the data is only available in unstructured form. In the following, a new approach for standardizing information models from existing plants with machine learning methods is described and an offline-online pattern recognition system for enabling anomaly detection under varying machine conditions is introduced. The system can enable the local calculation of signal thresholds that allow more granular anomaly detection than using only single indexing and aims to improve the detection of anomalous machine behaviour especially in finish machining.
Rocznik
Strony
98--108
Opis fizyczny
Bibliogr. 11 poz., rys.
Twórcy
  • Institute of Production Science (wbk), Karlsruhe Institute of Technology (KIT), Germany
  • Institute of Production Science (wbk), Karlsruhe Institute of Technology (KIT), Germany
  • Institute of Production Science (wbk), Karlsruhe Institute of Technology (KIT), Germany
  • Institute of Production Science (wbk), Karlsruhe Institute of Technology (KIT), Germany
Bibliografia
  • [1] ISMAIL A., TRUONG H.L., KASTNER W., 2018, Manufacturing Process Data Analysis Pipelines: a Requirements Analysis and Survey, Journal of Big Data, 6, 1–26.
  • [2] GITTLER T., GONTARZ A., WEISS L., WEGENER K., 2019, A Fundamental Approach for Data Acquisition on Machine Tools as Enabler for Analytical Industrie 4.0 Applications. Procedia CIRP, 79, 586–591, DOI: 10.1016/j.procir.2019.02.088.
  • [3] SOBEL W., 2014, MTConnect Standard, MTConnect Institute, Online available https://github.com/mtconnect/standard.
  • [4] BEN E., BINGYAN Z., HANSEL A., MASAHIKO M., FUJISHIMA M., 2014, Machine Monitoring System Based on MTConnect Technology, Procedia CIRP, 22, 92–97, DOI: 10.1016/j.procir.2014.07.148.
  • [5] LEE J., KAO H.A., YANG S., 2014, Service Innovation and Smart Analytics for Industry 4.0 and Big Data Environment, Procedia CIRP, 16, 3–8, DOI: 10.1016/j.procir.2014.02.001.
  • [6] LIN J., KEOGH E., LONARDI S., PATEL P., 2002, Finding Motifs in Time Series, Proceedings of the Second Workshop on Temporal Data Mining, 53–68.
  • [7] KEOGH E., LIN J., 2005, Clustering of Time-Series Subsequences is Meaningless: Implications for Previous and Future Research, Knowl. Inf. Syst., 8/2, 154–177, DOI: 10.1007/s10115-004-0172-7.
  • [8] SAKURAI Y., FALOUTSOS Ch., YAMAMURO M., 2007, Stream Monitoring Under the Time Warping Distance, IEEE 23rd International Conference on Data Engineering, Istanbul, 1046–1055.
  • [9] EMEC S., KRÜGER J., SELIGER G., 2016, Online Fault-monitoring in Machine Tools Based on Energy Consumption Analysis and Non-Invasive Data Acquisition for Improved Resource-Efficiency, Procedia CIRP, 40, 236–243, DOI: 10.1016/j.procir.2016.01.111.
  • [10] TANI GmbH Networks for Industry, Copyright 2013–2019, Tani GmbH, Nürnberg, Deutschland, Online available https://www.tanindustrie.de/de/index.php.
  • [11] NETZER M., MICHELBERGER J., FLEISCHER J., 2020, Intelligent Anomaly Detection of Machine Tools Based on Mean Shift Clustering, Procedia CIRP, 93, 1448–1453.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e085d933-27bc-42ae-a4ce-4128a953a3ec
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.