PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A new idea to increase the convective efficiency of a solar tower air receiver by creating a controlled vortex

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Concentrated solar energy as a source of renewable energy has a high potential for solving the current energy crisis. The solar tower receiver is a crucial element of solar energy conversion efficiency. To increase the convective efficiency of the solar tower receiver, the idea of creating a vortex is proposed. The vortex is created either in the plane in front of the receiver, for flat receivers, or in the internal volume of the receiver, for cavity-type receivers. The calculation formulas for calculating the parameters of the controlled vortex are proposed and computer modeling is performed to determine the effectiveness of the proposed idea. The results of computer modeling confirmed the physical possibility of the controlled vortex formation in the receiver space and visually show the flow structure. Also, the general dependence of the air return coefficient in the VoCoRec receiver on the flow twist was found. Conclusions are drawn on the satisfactory results obtained and on the improvement of the existing model of the controlled vortex.
Rocznik
Strony
46--55
Opis fizyczny
Bibliogr. 18 poz., rys., wykr., wzory
Twórcy
  • German Aerospace Center (DLR), Institute of Solar Research, Julich, Germany
Bibliografia
  • [1] Ni X.W., Liu T.N., Liu D., Effects of Volumetric Property Models on the Efficiency of a Porous Volumetric Solar Receiver. Energies, 2022, 15(11). DOI: 10.3390/en15113899.
  • [2] Jayranaiwachira N., et al., Thermal-hydraulic performance of solar receiver duct with inclined punched-ribs and grooves. Case Studies in Thermal Engineering, 2022, 39. DOI: ARTN 10243710.1016/j.csite.2022.102437.
  • [3] Hoffschmidt B., et al., High Concentration Solar Collectors. Reference Module in Earth Systems and Environmental Sciences, 2021.
  • [4] Becker M., et al., Second generation central receiver technologies. 1993, Karlsruhe (Germany): C.F. Mueller; Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Koeln (Germany); Sandia National Labs., Albuquerque, NM (United States). 133.
  • [5] Grobbel J., Development and Numerical Investigation of Reduction Strategies for Convective Heat Losses of Cavity Receivers Used in Solar Thermal Power Towers, in Faculty of Mechanical Engineering Chair of Solar Technology. 2014, FH Aachen. p. 89.
  • [6] Drexelius M., Schwarzbözl P., Pitz-Paal R., Experimental evaluation of wind induced pressure fluctuations in cavity shaped open volumetric air receivers. Solar Energy, 2022, 247: p. 146-157. DOI: https://doi.org/10.1016/j.solener.2022.10.003.
  • [7] Busch K., et al., VoCoRec - Design and performance of the two-stage volumetric conical receiver, in SolarPACES 2022, 2022, Solar Power and Chemical Energy Systems: U.S.A., Albuquerque.
  • [8] Stadler H., et al., CFD model for the performance estimation of open volumetric receivers and comparison with experimental data. Solar Energy, 2019, 177: p. 634-641. DOI: 10.1016/j.solener.2018.11.068.
  • [9] Maldonado D., et al., Evaluation of Aim Point Optimization Methods. International Conference on Concentrating Solar Power and Chemical Energy Systems (Solarpaces 2017), 2018, 2033. DOI: Artn 040025-1 10.1063/1.5067061.
  • [10] Capuano R., et al., Innovative Solar Receiver Micro-Design Based on Numerical Predictions, in ASME 2015 IMECE. 2015: Houston, USA.
  • [11] Davis D., et al., Thermal performance of vortex-based solar particle receivers for sensible heating. Solar Energy, 2019, 177: p. 163-177. DOI: 10.1016/j.solener.2018.10.086.
  • [12] VDI Heat Atlas. 2 ed. VDI-Buch. 2010: Springer Berlin, Heidelberg. XLII, 1584.
  • [13] Offergeld M., et al., VoCoRec - a Novel Two-Stage Volumetric Conical Receiver, in SolarPACES, 2021.
  • [14] PitzPaal R., et al., Experimental and numerical evaluation of the performance and flow stability of different types of open volumetric absorbers under non-homogeneous irradiation. Solar Energy, 1997, 60(3-4): p. 135-150. DOI: Doi 10.1016/S0038-092x(97)00007-8.
  • [15] Gomez-Garcia F., et al., Thermal and hydrodynamic behavior of ceramic volumetric absorbers for central receiver solar power plants: A review. Renewable and Sustainable Energy Reviews, 2016, 57: p. 648-658. DOI: https://doi.org/10.1016/j.rser.2015.12.106.
  • [16] Rosenstiel A., et al., Electrochemical Hydrogen Production Powered by PV/CSP Hybrid Power Plants: A Modelling Approach for Cost Optimal System Design. Energies, 2021, 14(12). DOI: ARTN 3437 10.3390/en14123437.
  • [17] Golubtsov V.M., To the calculation of the resistance coefficient of single-chamber cyclone furnaces. Heat power engineering, 1978, 4: p. 78-80.
  • [18] Cheilytko A., Pavlenko A.M., Koshlak H., Features of dispersed flow hydrodynamics in vortex chambers. A collection of research papers from the DSTU, 2010, 11: p. 76-82.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e0850479-c83a-4b28-a6ad-96f4325a36ec
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.