PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis and simulation of dynamic properties for the DFB laser

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Analiza i symulacja właściwości dynamicznych lasera typu DFB
Języki publikacji
EN
Abstrakty
EN
The numerical analysis of dynamic properties of the distributed feedback laser (DFB) is presented. The model is based on coupled rate equations, which can describe mutual relations between a photon number, an electron number and an optical phase in the active region of the DFB laser. The presented numerical approach includes intrinsic fluctuations of laser parameters and laser noises caused by these fluctuations to the model using the fourth order Runge-Kutta method. The DFB model can be consequently applied for a purpose of advanced simulations performed in the complete optical transmission model.
PL
.Zaprezentowano analizę numeryczną w łaściwości dynamicznych lasera typu DFB. Model bazuje na sprzężonych równaniach opisującychwzaje,mne relacje miedzy liczbą fotonów, liczbą elektronmów I fazą optyczną cześci aktywnej lasera. W modelowaniiu wykorzystano metodę Runge-Kutta czwartego rzędu. W opracowanym modelu uwzględnmiono możliwość fluktuacji parametrów lasera i wynikające stąd szumy.
Rocznik
Strony
17--20
Opis fizyczny
Bibliogr. 19 poz., tab., wykr.
Twórcy
autor
  • Slovak University of Technology, Faculty of Electrical Engineering and Information Technologies Institute of Multimedia Information and Communication Technologies Ilkovičova 3, 81219 Bratislava, Slovakia
autor
  • Slovak University of Technology, Faculty of Electrical Engineering and Information Technologies Institute of Multimedia Information and Communication Technologies Ilkovičova 3, 81219 Bratislava, Slovakia
Bibliografia
  • [1] Winzer P.J., “High-spectral-efficiency optical modulation formats,” Journal of Lightwave Technology, vol.30, no.24, pp. 3824–3835, 2012.
  • [2] Zeleny R., Lucki M., “Nearly zero dispersion-flattened photonic crystal fiber with fluorine-doped three-fold symmetry core,” Optical Engineering, vol.52, no.4, Article ID045003, 2013.
  • [3] Idachaba F., Ike D. U., Hope O., “Future trends in fiber optics communication,” in Proceedings of the World Congress on Engineering, vol. I, pp. 2–6, 2014.
  • [4] Litvik J., Kuba M., Benedikovic D., Dubovan J., Dado M., “Numerical estimation of spectral properies of laser based on rate equations,” Mathematical Problems in Engineering, Volume 2016, Article ID 4152895, Hindawi, 2016
  • [5] Mortazy E., Ahmadi V., Moravvej-Farshi K., “An integrated equivalent circuit model for relative intensity noise and frequency noise spectrum of a multimode semiconductor laser,” IEEE J. Quantum Electr., vol.38, pp.1366-1371, October 2002.
  • [6] Joindot I., “Measurements of relative intensity noise (RIN) in semiconductor lasers,” Journal de Physique III, EDP Sciences, pp.1591-1603, 1992.
  • [7] Urick V.J., Devgan P.S., McKinney J.D., Dexter J.L., “Laser noise and its impact on the performance of intensity modulation with direct-detection analog photonic links,”, Naval reasearch laboratory, DC 20375-5320, Washington, August 2007.
  • [8] Róka R., Čertík F., “Simulation tools for broadband passive optical networks,” in Simulation Technologies in Networking and Communications: Selecting the Best Tool for the Test. CRC Press, Taylor and Francis Group, pp. 337-364, 2015.
  • [9] Čertík F., Róka R., “Possibilities for advanced encoding techniques at signal transmission in the optical transmission”, Journal of Engineering – JE, vol.2016, Article ID 2385372, ISSN 2314-4904, March 2016.
  • [10] Šalík P., Róka R., “Impact of environmental influences on multilevel modulation formats at the signal transmission in the optical transmission medium, Journal IJCNIS, vol.9, pp.76-87, ISSN 2076-0930, April 2017.
  • [11] Šalík P., Čertík F., Róka R., “Duobinary modulation format in optical communication systems,” Advances in Signal Processing, vol.3, no.1, pp.1-7, ISSN 2332-6883, 2015.
  • [12] Fatadin I., Ives D., Wicks M., “Numerical simulation of intensity and phase noise from extracted parameters for CW DFB lasers,” IEEE J. Quant. Electr., vol.42, no.9, pp.934–941, 2006.
  • [13] Marcuse D., “Classical derivation of the Laser rate equation,” IEEE J. Quantum Electr., vol.QE-19, no.8, 1983.
  • [14] Binh L.N., “Optical Fiber Communications Systems: Theory and Practice with MATLAB® and Simulink® Models,” WileyInterscience publication, ISBN 9781439806203, April 2010.
  • [15] Tucker R., Pope D.J., “Circuit modeling of the effect of diffusionon damping in a narrow-stripe semiconductor laser,” IEEE J. Quantum Electr., vol.QE-19, pp.1179-1183, July 1983.
  • [16] Tucker R., Kaminow I.P., “High-frequency characteristics of directly modulated InGaAsP ridge waveguide and buried heterostructure lasers,” J. Lightwave Technology, vol.LT-2, no.4, pp.385-393, August 1984.
  • [17] André P., Teixeira A., Pellegrino L.P., Lima M., Nogueira R., Monteiro P., Pinto A.N., Pinto J.L., and Rocha J.F.D., “Extraction of laser parameters for simulation purposes,” NUSOD 2005, paper WP19, Berlin, Germany, 2005.
  • [18] Ahmed M., Yamada M., Saito M., “Numerical modeling of intensity and phase noise in semiconductor lasers,” IEEE J. Quantum Electr., vol.37, no.12, December 2001.
  • [19] Šalík P., Róka R., “Analysis of Possibilities for Numerical Simulations of Continues Wave DFB Laser”, ICUMT 2017 - 9th International Congress Munich, pp.215-219, ISBN 978-1-53863434-9, November 2017.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e081f984-65e2-4f8b-bdaf-b5f4eb508511
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.