PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Stability assessment of mining excavations: the impact of large depths

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Back in the early 1980s, coal deposits occurring at depths of ~700 m below surface were already regarded as large-depth deposits. Meanwhile, today the borderline depth of large-depth mining has extended to >1,000 m. Design, excavation and maintenance of mining roadways at the depth of >1,000 m have, therefore, become crucial issues in a practical perspective in recent years. Hence, it is now extremely important to intensify research studies on the influence of large depths on the behaviour of rock mass and deformation of support in underground excavations. The paper presents the results of the study carried out in five mining excavations at depths ranging from 950 to 1,290 m, where monitoring stations with measurement equipment were built. The analysis of data from laboratory and coal mine tests, as well as in situ monitoring, helped to formulate a set of criteria for stability assessment of underground excavations situated at large depths. The proposed methodology of load and deformation prediction in support systems of the excavations unaffected by exploitation is based on the criteria referring to the depth of excavation and the quality of rock mass. The depth parameter is determined by checking whether the analysed excavation lies below the critical depth, whereas the rock mass quality is determined on the basis of the roof lithology index (WL) and the crack intensity factor (n).
Wydawca
Rocznik
Strony
180--187
Opis fizyczny
Bibliogr. 19 poz., rys., tab.
Twórcy
  • AGH University of Science and Technology, Kraków, Poland
  • AGH University of Science and Technology, Kraków, Poland
autor
  • AGH University of Science and Technology, Kraków, Poland
Bibliografia
  • [1] Dubiński, J., Turek, M. (2012). Szanse i zagrożenia rozwoju górnictwa węgla kamiennego w Polsce [Chances and threats to the development of hard coal mining in Poland]. Wiadomości Górnicze, 63(11), 626-633 (in Polish).
  • [2] Lubosik, Z., Prusek, S., Wrana, A., Walentek, A. (2015). Underground measurement of gateroad stability at the depth around 1000 m. In: 34th International Conference on Ground Control in Mining, 1-9.
  • [3] Duży, S. (2007). Wpływ głębokości lokalizacji wyrobisk górniczych na niezawodność i bezpieczeństwo ich konstrukcji. Warsztaty 2007 z cyklu: Zagrożenia naturalne w górnictwie, 183-196 (in Polish).
  • [4] Majcherczyk, T., Małkowski, P., Niedbalski, Z., Bednarek, Ł. (2014). Analysis of yielding steel arch support with rock bolts in mine roadways stability aspect. Archives of Mining Sciences, 59(3), 641-654.
  • [5] Walentek, A., Lubosik, Z. (2017). Optymalizacja obudowy wyrobisk przyścianowych zlokalizowanych na głębokości większej niż 1000 m. Przegląd Górniczy, 73(2), 76-84 (in Polish).
  • [6] Hoek, E., Kaiser, P., Bawden, W. (1995). Support of Underground Excavation in Hard Rock. Funding by Mining Research Directorate and Universities Research Incentive Fund, Rotterdam.
  • [7] Majcherczyk, T., Małkowski, P., Niedbalski, Z. (2008). Badania nowych rozwiązań technologicznych w celu rozrzedzenia obudowy podporowej w wyrobiskach korytarzowych [Testing new technological solutions for increasing the clear interval between arches in roadways]. Kraków. Uczelniane Wydawnictwa Naukowo-Dydaktyczne (in Polish).
  • [8] Brodny, J. (2010). Determining the working characteristic of a friction joint in a yielding support. Archives of Mining Sciences, 55(4), 733-746.
  • [9] Brown, E., Hoek, H. (1978). Trends in relationships between measured rock in situ stress and depth. International Journal of Rock Mechanics and Mining Sciences, 15(4), 211-215.
  • [10] Liu, C. (2011). Distribution laws of in-situ stress in deep underground coal mines. Procedia Engineering, 26(1), 909-917.
  • [11] Malan, D., Basson, F. (1998). Ultra-deep mining: The increased potentional for squeezing conditions. The Journal of the South African Institute of Mining and Metallurgy, 98(7), 353-363.
  • [12] Rotkegel, M. (2013). ŁPw steel arch support – Designing and test results. Journal of Sustainable Mining, 12(1), 34-40.
  • [13] Zhang, W., Zhang, D., Xu, M. (2013). Fast drivage technology for large sections of deep coal-rock roadway in complicated geological conditions. Electronic Journal of Geotechnical Engineering, 13, 1939-1950.
  • [14] Brodny, J. (2011). Tests of friction joints in mining yielding supports under dynamic load. Archives of Mining Sciences, 56(2), 303-318.
  • [15] Jiang, B., Wang, L., Lu, Y., Gu, S., Sun, X. (2015). Failure mechanism analysis and support design for deep composite soft rock roadway: A case study of the Yangcheng coal mine in China. Shock and Vibration, 1, 1-14.
  • [16] Zhai, X., Huang, G., Chen, Ch., Li, R. (2018). Combined supporting technology with bolt-grouting and floor pressurerelief for deep chamber: An underground coal mine case study. Energies, 11(1), 1-16.
  • [17] Cao, R., Cao, P., Lin, H. (2016). Support technology of deep roadway under high stress and its application. International Journal of Mining Science and Technology, 26(5), 787-793.
  • [18] Yu, Z., Kulatilake, P., Jiang, F. (2012). Effect of tunnel shape and support system on stability of a tunnel in a deep coal mine in China. Geotechnical and Geological Engineering, 30(2), 383-394.
  • [19] Bednarek, Ł. (2017). Wpływ dużej głębokości wyrobisk udostępniających w kopalni węgla kamiennego na zachowanie się górotworu i deformacje obudowy [Influence of the great depth of opening-out excavation headings in coal mines on the behavior of rock mass and ground support deformation]. Ph.D. Thesis. AGH University of Science and Technology, Kraków. [unpublished] (in Polish).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e076c2e6-1e88-49e5-9850-bf9d9cf691d9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.