PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Phase transitions in metallic alloys driven by the high pressure torsion

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Severe plastic deformation can lead to the phase transformations in the materials. Even the severe plastic deformation at ambient temperature is frequently equivalent to the heat treatment at a certain elevated temperature (effective temperature). However, if the real annealing at the elevated temperature leads to the grain growth, the severe plastic deformation leads to strong grain refinement. In this review the methods of determination of effective temperature after high-pressure torsion of metallic alloys are discussed.
Rocznik
Strony
242--249
Opis fizyczny
Bibliogr. 77 poz., rys., wykr.
Twórcy
autor
  • Institute of Solid State Physics, Russian Academy of Sciences, Ac. Ossipyan Str. 2, 142432 Chernogolovka, Russia
  • Laboratory of Hybrid Materials, National University of Science and Technology, MISIS, Leninskii prosp. 4, 119049 Moscow, Russia
autor
  • Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Reymonta St. 25, 30-059 Cracow, Poland
autor
  • Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Reymonta St. 25, 30-059 Cracow, Poland
Bibliografia
  • [1] G. Martin, Phase stability under irradiation: Ballistic effects, Physical Review B 30 (1984) 1424–1436.
  • [2] B.B. Straumal, A.A. Mazilkin, B. Baretzky, E. Rabkin, R.Z. Valiev, Accelerated diffusion and phase transformations in Co–Cu alloys driven by the severe plastic deformation, Materials Transactions 53 (2012) 63–71.
  • [3] X. Sauvage, A. Chbihi, X. Quelennec, Severe plastic deformation and phase transformations, Journal of Physics 240 (2010) 012003.
  • [4] H.W. Zhang, S. Ohsaki, S. Mitao, A. Ohnuma, K. Hono, Microstructural investigation of white etching layer on pearlite steel rail, Materials Science and Engineering: A 421 (2006) 191–199.
  • [5] W. Lojkowski, M. Djahanbakhsh, G. Burkle, S. Gierlotka W. Zielinski, H.J. Fecht, Materials Science and Engineering: A 303 (2001) 197–208.
  • [6] K. Hono, M. Ohnuma, M. Murayama, S. Nishida, A. Yoshie T. Takahashi, Cementite decomposition in heavily drawn pearlite steel wire, Scripta Materialia 44 (2001) 977–983.
  • [7] A. Taniyama, T. Takayama, M. Arai, T. Hamada, Structure analysis of ferrite in deformed pearlitic steel by means of X-ray diffraction method with synchrotron radiation, Scripta Materialia 51 (2004) 53–58.
  • [8] V.G. Gavriljuk, Decomposition of cementite in pearlitic steel due to plastic deformation, Materials Science and Engineering: A 345 (2003) 81–89.
  • [9] X. Sauvage, X. Quelennec, J.J. Malandain, P. Pareige, Nanostructure of a cold drawn tempered martensitic steel, Scripta Materialia 54 (2006) 1099–1103.
  • [10] V.A. Teplov, V.P. Pilugin, V.S. Gaviko, E.G. Chernyshov, Nonequilibrium solid-solution and nanocrystal structure of Fe–Cu alloy after plastic deformation under pressure, Philosophical Magazine: B 68 (1993) 877–881.
  • [11] V.V. Stolyarov, R. Lapovok, I.G. Brodova, P.F. Thomson, Ultra fine-grained Al–5 wt% Fe alloy processed by ECAP with backpressure, Materials Science and Engineering: A 357 (2003) 159–167.
  • [12] X. Sauvage, F. Wetscher, P. Pareige, Mechanical alloying of Cuand Fe induced by severe plastic deformation of a Cu–Fe composite, Acta Materialia 53 (2005) 2127–2135.
  • [13] B.B. Straumal, B. Baretzky, A.A. Mazilkin, F. Phillipp O.A. Kogtenkova, M.N. Volkov, R.Z. Valiev, Formation of nanograined structure and decomposition of supersaturated solid solution during high pressure torsion of Al–Zn and Al–Mg, Acta Materialia 52 (2004) 4469–4478.
  • [14] A.A. Mazilkin, B.B. Straumal, E. Rabkin, B. Baretzky, S. Enders, S.G. Protasova, O.A. Kogtenkova, R.Z Valiev, Softening of nanostructured Al–Zn and Al–Mg alloys after severe plastic deformation, Acta Materialia 54 (2006) 3933–3939.
  • [15] B.B. Straumal, S.G. Protasova, A.A. Mazilkin, E. Rabkin D. Goll, G. Schütz, B. Baretzky, R.Z. Valiev, Deformation-driven formation of equilibrium phases in the Cu–Ni alloys, Journal of Materials Science 47 (2012) 360–367.
  • [16] C.M. Cepeda-Jiménez, J.M. García-Infanta, A.P. Zhilyaev O.A. Ruano, F. Carreño, In fluence of the thermal treatment on the deformation-induced precipitation of a hypoeutectic Al–7 wt% Si casting alloy deformed by high-pressure torsion, Journal of Alloys and Compounds 509 (2011) 636–643.
  • [17] Y. Ivanisenko, I. MacLaren, X. Sauvage, R.Z. Valiev, H.-J. Fecht, Shear-induced α-γ transformation in nanoscale Fe–Ccomposite, Acta Materialia 54 (2006) 1659–1669.
  • [18] X. Sauvage, Y. Ivanisenko, The role of carbon segregation on nanocrystallisation of pearlitic steels processed by severe plastic deformation, Journal of Materials Science 42 (2007) 1615–1621.
  • [19] Y. Ivanisenko, W. Lojkowski, R.Z. Valiev, H.J. Fecht, The mechanism of formation of nanostructure and dissolution of cementite in a pearlitic steel during high pressure torsion, Acta Materialia 51 (2003) 5555–5570.
  • [20] V.V. Sagaradze, S.V. Morozov, V.A. Shabashov L.N. Romashev, R.I. Kuznetsov, Solution of spherical and plate-like intermetallics in Fe–Ni–Ti austenitic alloys during cold working, Physics of Metals and Metallography 66 (1988) 328–338.
  • [21] B.B. Straumal, A.A. Mazilkin, S.G. Protasova, S.V. Dobatkin A.O. Rodin, B. Baretzky, D. Goll, G. Schütz, Fe–C nanograined alloys obtained by high pressure torsion: structure and magnetic properties, Materials Science and Engineering: A 503 (2009) 185–189.
  • [22] V.V. Sagaradze, V.A. Shabashov, Deformation-induced anomalous phase transformations in nanocrystalline FCC Fe –Ni based alloys, Nanostructured Materials 9 (1997) 681–684.
  • [23] M. Murayama, K. Hono, Z. Horita, Microstructural evolution in an Al–1.7 at%Cu alloy deformed by equal-channel angular pressing, Materials Transactions—JIM 40 (1999) 938–941.
  • [24] S. Ohsaki, S. Kato, N. Tsuji, T. Ohkubo, K. Hono, Bulk mechanical alloying of Cu–Ag and Cu/Zr two-phase microstructures by accumulative roll-bonding process, Acta Materialia 55 (2007) 2885–2895.
  • [25] X. Sauvage, R. Pippan, Nanoscaled structure of a Cu–Fe composite processed by high-pressure torsion, Materials Science and Engineering: A 410–411 (2005) 345–347.
  • [26] X. Sauvage, C. Genevois, G. Da Costa, V. Pantsyrny, Atomic scale characterization of deformation-induced interfacial mixing in a Cu/V nanocomposite wire, Scripta Materialia 61 (2009) 660–663.
  • [27] X. Sauvage, W. Lefebvre, C. Genevois, S. Ohsaki, K. Hono, Complementary use of transmission electron microscopy and atom probe tomography for the investigation of steels nanostructured by severe plastic deformation, Scripta Materialia 60 (2009) 1056–1061.
  • [28] B.B. Straumal, S.V. Dobatkin, A.O. Rodin, S.G. Protasova A.A. Mazilkin, D. Goll, B. Baretzky, Structure and properties of nanograined Fe–C alloys after severe plastic deformation, Advanced Engineering Materials 13 (2011) 463–469.
  • [29] A.V. Korznikov, O. Dimitrov, G.F. Korznikova, J.P. Dallas A. Quivy, R.Z. Valiev, A. Mukherjee, Nanocrystalline structure and phase transformation of the intermetallic compound TiAl processed by severe plastic deformation, Nanostructured Materials 11 (1999) 17–23.
  • [30] A.V. Korznikov, G. Tram, O. Dimitrov, G.F. Korznikova S.R. Idrisova, Z. Pakiela, The mechanism of nanocrystalline structure formation in Ni3 Al during severe plastic deformation, Acta Materialia 49 (2001) 663–671.
  • [31] C. Rentenberger, H.P. Karnthaler, Extensive disordering in long-range-ordered Cu3 Au induced by severe plastic deformation studied by transmission electron microscopy, Acta Materialia 56 (2008) 2526–2530.
  • [32] A.V. Sergueeva, C. Song, R.Z. Valiev, A.K. Mukherjee, Structure and properties of amorphous and nanocrystalline NiTi prepared by severe plastic deformation and annealing, Materials Science and Engineering: A 339 (2003) 159–165.
  • [33] S.D. Prokoshkin, I.Yu. Khmelevskaya, S.V. Dobatkin I.B. Trubitsyna, E.V. Tatyanin, V.V. Stolyarov, E.A. Proko fiev, Alloy composition, deformation temperature, pressure and post-deformation annealing effects in severely deformed Ti–Ni based shape memory alloys, Acta Materialia 53 (2005) 2703–2714.
  • [34] X. Sauvage, L. Renaud, B. Deconihout, D. Blavette, D.H. Ping, K. Hono, Solid state amorphization in cold drawn Cu/Nb wires, Acta Materialia 49 (2001) 389–394.
  • [35] T. Miyazaki, D. Terada, Y. Miyajima, C. Suryanarayana R.Murao,Y.Yokoyama,K.Sugiyama,M.Umemoto,T. Todaka, N. Tsuji, Synthesis of non-equilibrium phases in immiscible metals mechanically mixed by high pressure torsion, Journal of Materials Science 46 (2011) 4296–4301.
  • [36] A.A. Mazilkin, G.E. Abrosimova, S.G. Protasova, B.B. Straumal, G. Schütz, S.V. Dobatkin, A.S Bakai, Transmission electron microscopy investigation of boundaries between amorphous “grains” in Ni 50 Nb 20 Y 30 alloy, Journal of Materials Science 46 (2011) 4336–4342.
  • [37] V.V. Stolyarov, D.V. Gunderov, A.G. Popov, V.S. Gaviko A.S Ermolenko, Structure evolution and changes in magnetic properties of severe plastic deformed Nd(Pr)–Fe–B alloys during annealing, Journal of Alloys and Compounds 281 (1998) 69–71.
  • [38] Y. Matsuura, S. Hirosawa, H. Yamamoto, S. Fujimira M. Sagawa, K. Osamura, Phase diagram of the Nd–Fe-B ternary system, Japanese Journal of Applied Physics. Part 2—Letters 24 (1985) L635–L637.
  • [39] B.B. Straumal, A.A. Mazilkin, S.G. Protasova, D. Goll B. Baretzky, A.S Bakai, S.V. Dobatkin, Formation of two amorphous phases in the Ni60 Nb18 Y22 alloy after high pressure torsion, Kovove Materialy—Metallic Materials 49 (2011) 17–22.
  • [40] Á. Révész, S. Hóbor, J.L. Lábár, A.P. Zhilyaev, Zs. Kovácz, Partial amorphization of a Cu–Zr–Ti alloy by high pressure torsion, Journal of Applied Physics 100 (2006) 103522.
  • [41] I. MacLaren, Y. Ivanisenko, R.Z. Valiev, H.J. Fecht, Reverse martensitic transformation of ferrite to austenite under severe plastic deformation, Journal of Physics 26 (2006) 335–338.
  • [42] Y. Ivanisenko, I. MacLaren, X. Sauvage, R.Z. Valiev, H.J. Fecht, Phase transformations in pearlitic steels induced by severe plastic deformation, Solid State Phenomena 114 (2006) 133–144.
  • [43] Y. Ivanisenko, I. MacLaren, X. Sauvage, R.Z. Valiev, H.J. Fecht, Shear-induced α-γ transformation in nanoscale Fe–Ccomposite, Acta Materialia 54 (2006) 1659–1669.
  • [44] A.P. Zhilyaev, I. Sabirov, G. González-Doncel, J. Molina-Aldareguía, B. Srinivasarao, M.T. Pérez-Prado, Effect of Nb additions on the microstructure, thermal stability and mechanical behavior of high pressure Zr phases under ambient conditions, Materials Science and Engineering: A 528 (2011) 3496–3505.
  • [45] A.P. Zhilyaev, A.V. Sharafutdinov, M.T. Pérez-Prado, Phase transformations during high-pressure torsion of pure Zr and of a Zr-2.5%Nb alloy, Advanced Engineering Materials 12 (2010) 754–757.
  • [46] A.P. Zhilyaev, F. Gálvezc, A.V. Sharafutdinov, M.T. Pérez-Prado, In fluence of the high pressure torsion die geometry on the allotropic phase transformations in pure Zr, Materials Science and Engineering: A 527 (2010) 3918–3928.
  • [47] M.T. Pérez-Prado, A.V. Sharafutdinov, A.P. Zhilyaev, Thermal stability of pure bcc Zr fabricated by high pressure torsion, Materials Letters 64 (2010) 211–214.
  • [48] M.T. Pérez-Prado, A.P. Zhilyaev, First experimental observation of shear induced hcp to bcc transformation in pure Zr, Physical Review Letters 102 (2009) 175504.
  • [49] K. Edalati, Z. Horita, Y. Mine, High-pressure torsion of hafniurn, Materials Science and Engineering: A 527 (2010) 2136–2141.
  • [50] K. Edalati, Z. Horita, S. Yagi, E. Matsubara, Allotropic phase transformation of pure zirconium by high-pressure torsion, Materials Science and Engineering: A 523 (2009) 277–281.
  • [51] K. Edalati, E. Matsubara, Z. Horita, Processing pure Ti by high-pressure torsion in wide ranges of pressures and strain, Metallurgical and Materials Transactions A 40 (2009) 2079–2086.
  • [52] Y. Ivanisenko, A. Kilmametov, H. Roesner, R.Z. Valiev, Evidence of alpha –4 omega phase transition in titanium after high pressure torsion, International Journal of Materials Research 99 (2008) 36–41.
  • [53] A.M. Glezer, M.R. Plotnikova, A.V. Shalimova, S.V. Dobatkin, Severe plastic deformation of amorphous alloys: I. Structure and mechanical properties, Bulletin of the Russian Academy of Sciences: Physics 73 (2009) 1233–1236.
  • [54] S. Hóbor, Á. Révész, A.P. Zhilyaev, Zs. Kovácz, Different nanocrystallization sequence during high pressure torsion and thermal treatments of amorphous Cu60 Zr20 Ti20 alloy, Reviews on Advanced Materials Science 18 (2008) 590–592.
  • [55] Zs. Kovács, P. Henits, A.P. Zhilyaev, Á. Révész, Deformation induced primary crystallization in a thermally non-primary crystallizing amorphous Al 85 Ce8 Ni 5 Co2 alloy, Scripta Materialia 54 (2006) 1733–1737.
  • [56] G.E. Abrosimova, A.S. Aronin, S.V. Dobatkin, S.D. Kaloshkin, D.V. Matveev, O.G. Rybchenko, E.V. Tatyanin, I.I. Zverkova, The formation of nanocrystalline structure in amorphous Fe-Si-B alloy by severe plastic deformation, Journal of Metastable and Nanocrystalline Materials 24 (2005) 69–72.
  • [57] Á. Révész, E. Schafler, Zs. Kovács, Structural anisotropy in a Zr57 Ti5 Cu20 Al10 Ni8 bulk metallic glass deformed by high pressure torsion at room temperature, Applied Physics Letters 92 (2008) 011910.
  • [58] S. Hóbor, Zs. Kovács, A.P. Zhilyaev, L.K. Varga, P.J. Szabó, Á. Révész, High pressure torsion of Cu-based metallic glasses, Journal of Physics 240 (2010) 012153.
  • [59] S. Hóbor, Á. Révész, P.J. Szabó, A.P. Zhilyaev, V. Kovács Kis J.L. Lábár, Zs. Kovács, High pressure torsion of amorphous Cu60 Zr30 Ti10 alloy, Journal of Applied Physics 104 (2008) 033525.
  • [60] P. Henits, Á. Révész, A.P. Zhilyaev, Zs. Kovács, Severe plastic deformation induced nanocrystallization of melt-spun Al85 Y8 Ni5 Co2 amorphous alloy, Journal of Alloys and Compounds 461 (2008) 195–199.
  • [61] Zs. Kovács, P. Henits, A.P. Zhilyaev, N.Q. Chinh, Á. Révész, Microstructural characterization of the crystallization sequence of a severe plastically deformed Al–Ce–Ni–Co amorphous alloy, Materials Science Forum 519–521 (2006) 1329–1334.
  • [62] B.B. Straumal, L.M. Klinger, L.S. Shvindlerman, The in fluence of pressure on indium diffusion along single tin–germanium interphase boundaries, Scripta Metallurgica 17 (1983) 275–279.
  • [63] D.A. Molodov, B.B. Straumal, L.S. Shvindlerman, The effect of pressure on migration of the [001] tilt grain boundaries in the tin bicrystals, Scripta Metallurgica 18 (1984) 207–211.
  • [64] B.B. Straumal, A.S. Gornakova, Y.O. Kucheev, B. Baretzky, A. N. Nekrasov, Grain boundary wetting by a second solid phase in the Zr–Nb alloys, Journal of Materials Engineering and Performance 21 (2012) 721–724.
  • [65] G. Thomas, H. Mori, H. Fujita, Electron irradiation induced crystalline amorphous transitions in Ni–Ti alloys, Scripta Metallurgica 16 (1982) 589–592.
  • [66] N. Mattern, U. Kühn, A. Gebert, A. Schoeps, T. Gemminga L. Schultz, Phase separation in liquid and amorphous Ni–Nb–Y alloys, Materials Science and Engineering: A 449/451 (2007) 207–210.
  • [67] A.A. Mazilkin, B.B. Straumal, M.V. Borodachenkova, R.Z. Valiev, O.A. Kogtenkova, B. Baretzky, Gradual softening of Al–Zn alloys during high pressure torsion, Materials Letters 84 (2012) 63–65.
  • [68] T.B. Massalski (Ed.), Binary Alloy Phase Diagrams, 2nd ed., ASM International, Materials Park, OH, 1990.
  • [69] U.R. Kattner, The thermodynamic modeling of multicomponent phase equilibria, JOM 49 (12) (1997) 14–19.
  • [70] S. Swaminathan, K. Oh-Ishi, A.P. Zhilyaev, Ch.B. Fuller B. London, M.W. Mahoney, T.R. McNelley, Peak stir zone temperatures during friction stir processing, Metallurgical and Materials Transactions A 41 (2010) 631–640.
  • [71] T. Giles, K. Oh-Ishi, A.P. Zhilyaev, S. Swaminathan M.W. Mahoney, T.R. McNelley, The effect of friction stir processing on the microstructure and mechanical properties an aluminum lithium alloy, Metallurgical and Materials Transactions A 40 (2009) 104–115.
  • [72] K. Oh-Ishi, A.P. Zhilyaev, T.R. McNelley, A microtexture investigation of recrystallization during friction stir processing of as-cast NiAl bronze, Metallurgical and Materials Transactions A 37 (2006) 2239–2251.
  • [73] B.B. Straumal, A.S. Gornakova, O.B. Fabrichnaya, M.J. Kriegel, A.A. Mazilkin, B. Baretzky, A.M. Gusak, S.V. Dobatkin, Effective temperature of high pressure torsion in Zr–Nb alloys, High Temperature Material Processes 31 (2012) 339–350.
  • [74] S.K. Sikka, Y.K. Vohra, R. Chidambaram, Omega phase in materials, Progress in Materials Science 27 (1982) 245–310.
  • [75] A.V. Sergueeva, V.V. Stolyarov, R.Z. Valiev, A.K. Mukherjee, Advanced mechanical properties of pure titanium with ultra fine grained structure, Scripta Materialia 45 (2001) 747–752.
  • [76] J. Zhang, Y. Zhao, P.A. Rigg, R.S. Hixson, G.T. Gray III, Impurity effects on the phase transformations and equations of state of zirconium metals, Journal of Physics and Chemistry of Solids 68 (2007) 2297–2302.
  • [77] M.T. Pérez-Prado, A.A. Gimazov, O.A. Ruano, M.E. Kassner, A.P. Zhilyaev, Bulk nanocrystalline ω-Zr by high-pressure torsion, Scripta Materialia 58 (2008) 219–222.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e076835c-3ce4-426c-9c2f-feb7e6ac530d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.