PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

PAPR reduction using a combination between precoding and non-liner companding techniques for ACO-OFDM-based VLC systems

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Peak-to-average power ratio reduction techniques for visible light communication broadcasting systems are designed, simulated, and evaluated in this work. The proposed techniques are based on merging non-linear companding techniques with precoding techniques. This work aims to nominate an optimum novel scheme combining the low peak-to-average power ratio with the acceptable bit error rate performance. Asymmetrically clipped optical orthogonal frequency division multiplexing with the low peak-to-average power ratio performance becomes more attractive to real-life visible light communication applications due to non-linearity elimination. The proposed schemes are compared and an optimum choice is nominated. Comparing the presented work and related literature reviews for peak-to-average power ratio reduction techniques are held to ensure the proposed schemes validity and effectiveness.
Rocznik
Strony
59--70
Opis fizyczny
Bibliogr. 65 poz., tab., schem., wykr.
Twórcy
  • Photonic Research Lab, Electrical Engineering Department, College of Engineering, Shaqra University, Dawadmi 11961, Kingdom of Saudi Arabia
  • Electrical Engineering Department, Faculty of Engineering, Minia University, Minia, Egypt, P.O. Box 61111, Minia, Egypt
  • Electronics and Communication Department, Modern Academy for Engineering and Technology, Maadi 11585, Cairo, Egypt
  • Electrical Engineering Department, Faculty of Engineering, Minia University, Minia, Egypt, P.O. Box 61111
Bibliografia
  • [1] Mohammed, N. A. & Elkarim, M. A. Exploring the effect of diffuse reflection on indoor localization systems based on RSSI-VLC. Opt. Express 23, 20297 (2015), https://doi.org/10.1364/oe.23.020297.
  • [2] Grobe, L. et al. High-speed visible light communication systems. IEEE Commun. Mag. 51, 60–66 (2013), https://doi.org/10.1109/MCOM.2013.6685758.
  • [3] Mohammed, N. A. & Mansi, A. H. Performance enhancement and capacity enlargement for a DWDM-PON system utilizing an optimized cross seeding rayleigh backscattering design. Appl. Sci. 9, 4520 (2019), https://doi.org/10.3390/app9214520.
  • [4] Mohammed, A. N., Okasha, M. N. & Aly, M. H. A wideband apodized FBG dispersion compensator in long haul WDM systems. J. Optoelectron. Adv. Mater. 18, 475–479 (2016).
  • [5] Mohammed, N. A. & El Serafy, H. O. Ultra-sensitive quasi-distributed temperature sensor based on an apodized fiber Bragg grating. Appl. Opt. 57, 273 (2018), https://doi.org/10.1364/ao.57.000273.
  • [6] Mohammed, N. A. & Okasha, N. M. Single- and dual-band dispersion compensation unit using apodized chirped fiber Bragg grating. J. Comput. Electron. 17, 349–360 (2018), https://doi.org/10.1007/s10825-017-1096-2.
  • [7] Shehata, M. I. & Mohammed, N. A. Design and optimization of novel two inputs optical logic gates (NOT, AND, OR and NOR) based on single commercial TW-SOA operating at 40 Gbit/s. Opt. Quantum Electron. 48, 1–16 (2016), https://doi.org/10.1007/s11082-016-0602-2.
  • [8] Mohammed, N. A., Hamed, M. M., Khalaf, A. A. M., Alsayyari, A. & El-Rabaie, S. High-sensitivity ultra-quality factor and remarkable compact blood components biomedical sensor based on nanocavity coupled photonic crystal. Results Phys. 14, 102478 (2019), https://doi.org/10.1016/j.rinp.2019.102478.
  • [9] Mohammed, N. A., Abo Elnasr, H. S. & Aly, M. Performance evaluation and enhancement of 2×2 Ti:LiNbO3 Mach Zehnder interferometer switch at 1.3 µm and 1.55 µm. Open Electr. Electron. Eng. J. 6, 36–49 (2012), https://doi:10.2174/1874129001206010036
  • [10] Mostafa, T. S., Mohammed, N. A. & El-Rabaie, E. S. M. Ultra-high bit rate all-optical AND/OR logic gates based on photonic crystal with multi-wavelength simultaneous operation. J. Mod. Opt. 66, 1005–1016 (2019), https://doi.org/10.1080/09500340.2019.1598587.
  • [11] Mohammed, N. A., Abo Elnasr, H. S. & Aly, M. H. Analysis and design of an electro-optic 2 × 2 switch using Ti :KNbO3 as a waveguide based on MZI at 1.3 μ m. Opt. Quantum Electron. 46, 295–304 (2014), https://doi.org/10.1007/s11082-013-9760-7.
  • [12] Mostafa, T. S., Mohammed, N. A. & El-Rabaie, E. S. M. Ultracompact ultrafast-switching-speed all-optical 4×2 encoder based on photonic crystal. J. Comput. Electron. 18, 279–292 (2019), https://doi.org/10.1007/s10825-018-1278-6.
  • [13] Jovicic, A., Li, J. & Richardson, T. Visible light communication: opportunities, challenges and the path to market. IEEE Commun. Mag. 51, 26–32 (2013).
  • [14] Rehman, S. U., Ullah, S., Chong, P. H. J., Yongchareon, S. & Komosny, D. Visible light communication: A system perspective – Overview and challenges. Sensors 19, 1153 (2019), https://doi.org/10.3390/s19051153.
  • [15] Matheus, L. E. M., Vieira, A. B., Vieira, L. F. M., Vieira, M. A. M. & Gnawali, O. Visible light communication: concepts, applications and challenges. IEEE Commun. Surv. Tutorials 21, 3204 (2019), https://doi.org/10.1109/COMST.2019.2913348.
  • [16] Rust, I. C. & Asada, H. H. A dual-use visible light approach to integrated communication and localization of underwater robots with application to non-destructive nuclear reactor inspection. In IEEE International Conference on Robotics Automation (ICRA2012) 2445–2450 (2012), https://doi.org/10.1109/ICRA.2012.6224718.
  • [17] Mohammed, N. A., Badawi, K. A., Khalaf, A. A. M. & El-Rabaie, S. Dimming control schemes combining IEEE 802.15.7 and SC-LPPM modulation schemes with an adaptive M-QAM OFDM for indoor LOS VLC systems. Opto-Electron. Rev. 28, 203–212 (2020), https://doi.org/10.24425/opelre.2020.135259.
  • [18] Mohammed, N. A. & Badawi, K. A. Design and performance evaluation for a non-line of sight VLC dimmable system based on SC-LPPM. IEEE Access 6, 52393–52405 (2018), https://doi.org/10.1109/ACCESS.2018.2869878.
  • [19] Shoreh, M. H., Fallahpour, A. & Salehi, J. A. Design concepts and performance analysis of multicarrier CDMA for indoor visible light communications. J. Opt. Commun. Netw. 7, 554–562 (2015), https://doi.org/10.1364/JOCN.7.000554.
  • [20] Mossaad, M. S. A., Hranilovic, S. & Lampe, L. Visible light communications using OFDM and multiple LEDs. IEEE Trans. Commun. 63, 4304–4313 (2015), https://doi.org/10.1109/TCOMM.2015.2469285.
  • [21] Badawi, K. A., Mohammed, N. A. & Aly, M. H. Exploring BER performance of a SC-LPPM based LOS-VLC system with distinctive lighting. J. Optoelectron. Adv. Mater. 20, 290–301 (2018).
  • [22] Mohammed, N. A., Abaza, M. R. & Aly, M. H. Improved performance of M-ary PPM in different free-space optical channels due to reed solomon code using APD. J. Sci. Eng. Res. 2, 82–85 (2011).
  • [23] Tsonev, D., Sinanovic, S. & Haas, H. Novel unipolar orthogonal frequency division multiplexing (U-OFDM) for optical wireless. in IEEE Vehicular Technology Conference (2012), https://doi.org/10.1109/VETECS.2012.6240060.
  • [24] Islam, R., Choudhury, P. & Islam, M. A. Analysis of DCO-OFDM and flip-OFDM for IM/DD optical-wireless system. in 8th International Confference on Electrical and Computer Engineering: Advancing Technology for a Better Tomorrow (ICECE 2014) 32–35 (2015), https://doi.org/10.1109/ICECE.2014.7026929.
  • [25] Hu, W. W. PAPR reduction in DCO-OFDM visible light communication systems using optimized odd and even sequences combination. IEEE Photonics J. 11, 1024 (2019), https://doi.org/10.1109/JPHOT.2019.2892871.
  • [26] Dissanayake, S. D., Panta, K. & Armstrong, J. A novel technique to simultaneously transmit ACO-OFDM and DCO-OFDM in IM/DD systems. in IEEE Globecom Workshops (GC Wkshps 2011) 782–786 (2011), https://doi.org/10.1109/GLOCOMW.2011.6162561.
  • [27] Dissanayake, S. D., Member, S., Armstrong, J. & Member, S. Comparison of ACO-OFDM, DCO-OFDM and ADO-OFDM in IM/DD Systems. J. Light. Technol. 31, 1063–1072 (2013).
  • [28] Dang, J., Zhang, Z. & Wu, L. Improving the power efficiency of enhanced unipolar OFDM for optical wireless communication. Electron. Lett. 51, 1681–1683 (2015), https://doi.org/10.1049/el.2015.2024.
  • [29] Lam, E., Wilson, S. K., Elgala, H. & Little, T. D. C. Spectrally and energy efficient OFDM (SEE-OFDM) for intensity modulated optical wireless systems. The Cornell University, 1–26 (2015), https://arxiv.org/abs/1510.08172v1
  • [30] Lowery, A. J. Comparisons of spectrally-enhanced asymmetrically-clipped optical OFDM systems. Opt. Express 24, 3950 (2016), https://doi.org/10.1364/oe.24.003950.
  • [31] Elgala, H. & Little, T. Polar-based OFDM and SC-FDE links toward energy-efficient Gbps transmission under IM-DD optical system constraints. J. Opt. Commun. Netw. 7, A277–A284 (2015), https://doi.org/10.1364/JOCN.7.00A277.
  • [32] Zhang, T. et al. A performance improvement and cost-efficient ACO-OFDM scheme for visible light communications. Opt. Commun. 402, 199–205 (2017), https://doi.org/10.1016/j.optcom.2017.06.015.
  • [33] Kubjana, M. D., Shongwe, T. & Ndjiongue, A. R. Hybrid PLC-VLC based on ACO-OFDM. in 2018 IEEE International Conference On Intelligent And Innovative Computing Applications (ICONIC 2018) 364–368 (2018).
  • [34] Shawky, E., El-Shimy, M. A., Shalaby, H. M. H., Mokhtar, A. & El-Badawy, E.-S. A. Kalman Filtering for VLC Channel Estimation of ACO-OFDM Systems. in 2018 ASIA IEEE Communications And Photonics Conference (ACP) (2018).
  • [35] Niaz, M. T., Imdad, F., Ejaz, W. & Kim, H. S. Compressed sensing-based channel estimation for ACO-OFDM visible light communications in 5G systems. Eurasip J. Wirel. Commun. Netw. 2016, 268 (2016). https://doi.org/10.1186/s13638-016-0774-2.
  • [36] Hao, L., Wang, D., Cheng, W., Li, J. & Ma, A. Performance enhancement of ACO-OFDM-based VLC systems using a hybrid autoencoder scheme. Opt. Commun. 442, 110–116 (2019), https://doi.org/10.1016/j.optcom.2019.03.013.
  • [37] Vappangi, S. & Vakamulla, V. M. Channel estimation in ACO OFDM employing different transforms for VLC. AEU-Int. J. Electron. Commun. 84, 111–122 (2018), https://doi.org/10.1016/j.aeue.2017.11.016.
  • [38] Vappangi, S. & Vakamulla, V. M. A low PAPR multicarrier and multiple access schemes for VLC. Opt. Commun. 425, 121–132 (2018), https://doi.org/10.1016/j.optcom.2018.04.064.
  • [39] Mounir, M., Tarrad, I. F. & Youssef, M. I. Performance evaluation of different precoding matrices for PAPR reduction in OFDM systems. Internet Technol. Lett. 1, e70 (2018), https://doi.org/10.1002/itl2.70.
  • [40] Hu, S., Wu, G., Wen, Q., Xiao, Y. & Li, S. Nonlinearity reduction by tone reservation with null subcarriers for WiMAX system. Wirel. Pers. Commun. 54, 289–305 (2010), https://doi.org/10.1007/s11277-009-9726-z.
  • [41] Zhang, X., Wang, Q., Zhang, R., Chen, S. & Hanzo, L. Performance analysis of layered ACO-OFDM. IEEE Access 5, 18366–18381 (2017), https://doi.org/10.1109/ACCESS.2017.2748057.
  • [42] Anoh, K., Tanriover, C., Adebisi, B. & Hammoudeh, M. A new approach to iterative clipping and filtering papr reduction scheme for ofdm systems. IEEE Access 6, 17533–17544 (2017), https://doi.org/10.1109/ACCESS.2017.2751620.
  • [43] Madhavi, D. & Ramesh Patnaik, M. Implementation of non linear companding technique for reducing PAPR of OFDM. Mater. Today Proc. 5, 870–877 (2018), https://doi.org/10.1016/j.matpr.2017.11.159.
  • [44] Shaheen, I. A. A., Zekry, A., Newagy, F. & Ibrahim, R. Absolute exponential companding to reduced PAPR for FBMC/OQAM. in 2017 Palestinian International Confference on Information and Communication Technology (PICICT 2017) 60–65 (2017), https://doi.org/10.1109/PICICT.2017.17.
  • [45] Yang, Y., Zeng, Z., Feng, S. & Guo, C. A simple OFDM scheme for VLC systems based on μ-law mapping. IEEE Photonics Technol. Lett. 28, 641–644 (2016), https://doi.org/10.1109/LPT.2015.2503481.
  • [46] Yadav, A. K. & Prajapati, Y. K. PAPR minimization of clipped ofdm signals using tangent rooting companding technique. Wirel. Pers. Commun. 105, 1435–1447 (2019), https://doi.org/10.1007/s11277-019-06151-1.
  • [47] Hasan, M. M. VLM precoded SLM technique for PAPR reduction in OFDM systems. Wirel. Pers. Commun. 73, 791–801 (2013), https://doi.org/10.1007/s11277-013-1217-6.
  • [48] Freag, H. et al. PAPR reduction in VLC-OFDM system using CPM combined with PTS method. Int. J. Comput. Digit. Syst. 6, 127–132 (2017), https://doi.org/10.12785/ijcds/060304.
  • [49] Xiao, Y. et al. PAPR reduction based on chaos combined with SLM technique in optical OFDM IM/DD system. Opt. Fiber Technol. 21, 81–86 (2015), https://doi.org/10.1016/j.yofte.2014.08.014.
  • [50] Wang, Z., Wang, Z. & Chen, S. Encrypted image transmission in OFDM-based VLC systems using symbol scrambling and chaotic DFT precoding. Opt. Commun. 431, 229–237 (2019), https://doi.org/10.1016/j.optcom.2018.09.045.
  • [51] Sharifi, A. A. PAPR reduction of optical OFDM signals in visible light communications. ICT Express 5, 202–205 (2019), https://doi.org/10.1016/j.icte.2019.01.001.
  • [52] Ghassemlooy, Z., Ma, C. & Guo, S. PAPR reduction scheme for ACO-OFDM based visible light communication systems. Opt. Commun. 383, 75–80 (2017), https://doi.org/10.1016/j.optcom.2016.07.073
  • [53] Abd Elkarim, M., Elsherbini, M. M., AbdelKader, H. M. & Aly, M. H. Exploring the effect of LED nonlinearity on the performance of layered ACO-OFDM. Appl. Opt. 59, 7343–7351 (2020), https://doi.org/10.1364/AO.397559
  • [54] Kumar Singh, V. & Dalal, U. D. Abatement of PAPR for ACO-OFDM deployed in VLC systems by frequency modulation of the baseband signal forming a constant envelope. Opt. Commun. 393, 258–266 (2017), https://doi.org/10.1016/j.optcom.2017.02.065.
  • [55] Wang, Z.-P., Xiao, J.-N., Li, F. & Chen, L. Hadamard precoding for PAPR reduction in optical direct detection OFDM systems. Optoelectron. Lett. 7, 363–366 (2011), https://doi.org/10.1007/s11801-011-1044-5.
  • [56] Wang, Z.-P. & Zhang, S.-Z. Grouped DCT precoding for PAPR reduction in optical direct detection OFDM systems. Optoelectron. Lett. 9, 213–216 (2013), https://doi.org/10.1007/s11801-013-3021-7.
  • [57] Ali Sharifi, A. Discrete Hartley matrix transform precoding-based OFDM system to reduce the high PAPR. ICT Express 5, 100–103 (2019), https://doi.org/10.1016/j.icte.2018.07.001.
  • [58] El-Nabawy, M. M., Aboul-Dahab, M. A. & El-Barbary, K. PAPR Reduction of OFDM signal by using combined hadamard and modified meu-law companding techniques. Int. J. Comput. Networks Commun. 6, 71 (2014).
  • [59] Reddy, Y. S., Reddy, M. V. K., Ayyanna, K. & Ravikumar, G. V. The effect of NCT techniques on SC-FDMA system in presence of HPA. Int. J. Res. Computer Commun. Technol. 3, 844–848 (2014).
  • [60] Abd El-Rahman, A. F. et al. Companding techniques for SC-FDMA and sensor network applications. Int. J. Electron. Lett. 8, 241–255 (2020), https://doi.org/10.1080/21681724.2019.1600051.
  • [61] Azim, A. W., Le Guennec, Y. & Maury, G. Decision-directed iterative methods for PAPR reduction in optical wireless OFDM systems. Opt. Commun. 389, 318–330 (2017), https://doi.org/10.1016/j.optcom.2016.12.026.
  • [62] Guan, R. et al. Enhanced subcarrier-index modulation-based asymmetrically clipped optical OFDM using even subcarriers. Opt. Commun. 402, 600–605 (2017), https://doi.org/10.1016/j.optcom.2017.06.032.
  • [63] Hu, W. W. SLM-based ACO-OFDM VLC system with low-complexity minimum amplitude difference decoder. Electron. Lett. 54, 144–146 (2018), https://doi.org/10.1049/el.2017.3158.
  • [64] Offiong, F. B., Sinanovic, S. & Popoola, W. O. On PAPR reduction in pilot-assisted optical OFDM communication systems. IEEE Access 5, 8916–8929 (2017), https://doi.org/10.1109/ACCESS.2017.2700877.
  • [65] Xu, W., Wu, M., Zhang, H., You, X. & Zhao, C. ACO-OFDM-specified recoverable upper clipping with efficient detection for optical wireless communications. IEEE Photonics J. 6, (2014), https://doi.org/10.1109/JPHOT.2014.2352643.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e076635b-b577-4fb2-bd73-c83feb4f6093
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.