PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Condensers with infinitely many touching Borel plates and minimum energy problems

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Defining a condenser in a locally compact space as a locally finite, countable collection of Borel sets Ai, i ϵ I, with the sign si = ±1 prescribed such that Ai ∩ Aj = Ø; whenever sisj = −1, we consider a minimum energy problem with an external field over infinite-dimensional vector measures (µi) i ϵ I, where µi is a suitably normalized positive Radon measure carried by Ai and such that µi ≤ ξi for all i ϵ I0, I0 ⊂ I and constraints ξi, i ϵ I0, being given. If I0 = Ø, the problem reduces to the (unconstrained) Gauss variational problem, which is in general unsolvable even for a condenser of two closed, oppositely signed plates in R3 and the Coulomb kernel. Nevertheless, we provide sufficient conditions for the existence of solutions to the stated problem in its full generality, establish the vague compactness of the solutions, analyze their uniqueness, describe their weighted potentials, and single out their characteristic properties. The strong and the vague convergence of minimizing nets to the minimizers is studied. The phenomena of non-existence and non-uniqueness of solutions to the problem are illustrated by examples. The results obtained are new even for the classical kernels on Rn, n ≥ 2, and closed Ai, i ϵ I, which is import ant for applications.
Rocznik
Strony
125--163
Opis fizyczny
Bibliogr. 45 poz., rys.
Twórcy
  • Institute of Mathematics, Academy of Sciences of Ukraine, Tereshchenkivska 3, 01601 Kyiv, Ukraine
Bibliografia
  • [1] A. I. Aptekarev, Asymptotics of simultaneously orthogonal polynomials in the Angelesco case, Math. USSR-Sb. 64 (1989), 57-84.
  • [2] A. I. Aptekarev and A. B. J. Kuijlaars, Hermite-Padé approximations and multiple orthogonal polynomial ensembles, Russian Math. Surveys 66 (2011), 1133-1199.
  • [3] N. Bourbaki, General Topology, Chapters 1-4, Springer, Berlin, 1989.
  • [4] N. Bourbaki, Integration, Chapters 1-6, Springer, Berlin, 2004.
  • [5] M. Brelot, Sur le rôle du point à l’infini dans la théorie des fonctions harmoniques, Ann. Sci. École Norm. Sup. 61 (1944), 301-332.
  • [6] M. Brelot, On Topologies and Boundaries in Potential Theory, Lecture Notes in Math. 175, Springer, Berlin, 1971.
  • [7] H. Cartan, Théorie du potentiel newtonien: énergie, capacité, suites de potentiels, Bull. Soc. Math. France 73 (1945), 74-106.
  • [8] H. Cartan, Théorie générale du balayage en potentiel newtonien, Ann. Univ. Grenoble 22 (1946), 221-280.
  • [9] J. Deny, Les potentiels d’énergie finie, Acta Math. 82 (1950), 107-183.
  • [10] J. L. Doob, Classical Potential Theory and Its Probabilistic Counterpart, Springer, Berlin, 1984.
  • [11] P. D. Dragnev, B. Fuglede, D. P. Hardin, E. B. Saff, and N. Zorii, Condensers with touching plates and constrained minimum Riesz and Green energy problems, Constr. Approx. 50 (2019), 369-401.
  • [12] P. D. Dragnev and E. B. Saff, Constrained energy problems with applications to orthogonal polynomials of a discrete variable, J. Anal. Math. 72 (1997), 223-259.
  • [13] R. E. Edwards, Cartan’s balayage theory for hyperbolic Riemann surfaces, Ann. Inst. Fourier (Grenoble) 8 (1958), 263-272.
  • [14] R. E. Edwards, Functional Analysis. Theory and Applications, Holt, Rinehart and Winston, New York, 1965.
  • [15] O. Frostman, Potentiel d’équilibre et capacité des ensembles avec quelques applications à la théorie des fonctions, Comm. Sém. Math. Univ. Lund 3 (1935), 118 pp.
  • [16] B. Fuglede, On the theory of potentials in locally compact spaces, Acta Math. 103 (1960), 139-215.
  • [17] B. Fuglede, The logarithmic potential in higher dimensions, Mat.-Fys. Medd. Danske Vid. Selsk. 33 (1960), no. 1, 14 pp.
  • [18] B. Fuglede, Caractérisation des noyaux consistants en théorie du potentiel, C. R. Acad. Sci. Paris 255 (1962), 241-243.
  • [19] B. Fuglede and N. Zorii, Constrained Gauss variational problems for a condenser with intersecting plates, Ann. Polon. Math. 120 (2017), 227-260.
  • [20] B. Fuglede and N. Zorii, Green kernels associated with Riesz kernels, Ann. Acad. Sci. Fenn. Math. 43 (2018), 121-145.
  • [21] B. Fuglede and N. Zorii, An alternative concept of Riesz energy of measures with application to generalized condensers, Potential Anal. 51 (2019), 197-217.
  • [22] B. Fuglede and N. Zorii, Various concepts of Riesz energy of measures and application to condensers with touching plates, Potential Anal. (online, 2019).
  • [23] C. F. Gauss, Allgemeine Lehrsätze in Beziehung auf die im verkehrten Verhältnisse des Quadrats der Entfernung wirkenden Anziehungs- und Abstoßungs-Kräfte (1839), Werke 5 (1867), 197-244.
  • [24] A. A. Gonchar and E. A. Rakhmanov, On convergence of simultaneous Padé approximants for systems of functions of Markov type, Proc. Steklov Inst. Math. 157 (1983), 31-50.
  • [25] A. A. Gonchar and E. A. Rakhmanov, On the equilibrium problem for vector potentials, Russian Math. Surveys 40 (1985), 183-184.
  • [26] A. A. Gonchar and E. A. Rakhmanov, Equilibrium measure and the distribution of zeros of extremal polynomials, Math. USSR-Sb. 53 (1986), 119-130.
  • [27] H. Harbrecht, W. L. Wendland, and N. Zorii, Riesz minimal energy problems on Ck−1; k-manifolds, Math. Nachr. 287 (2014), 48-69.
  • [28] J. L. Kelley, General Topology, Van Nostrand, Toronto, 1955.
  • [29] A. B. J. Kuijlaars, Multiple orthogonal polynomials in random matrix theory, in: Proc. International Congress of Mathematicians (Hyderabad, 2010), Vol. III, 1417-1432.
  • [30] N. S. Landkof, Foundations of Modern Potential Theory, Springer, Berlin, 1972.
  • [31] F. Leja, The Theory of Analytic Functions, PWN, Warszawa, 1957 (in Polish).
  • [32] F. Lindskog, S. I. Resnick, and J. Roy, Regularly varying measures on metric spaces: Hidden regular variation and hidden jumps, Probab. Surv. 11 (2014), 270-314.
  • [33] H. N. Mhaskar and E. B. Saff, Extremal problems for polynomials with exponential weights, Trans. Amer. Math. Soc. 285 (1984), 204-234.
  • [34] E. H. Moore and H. L. Smith, A general theory of limits, Amer. J. Math. 44 (1922), 102-121.
  • [35] G. Of, W. L. Wendland, and N. Zorii, On the numerical solution of minimal energy problems, Complex Var. Elliptic Equations 55 (2010), 991-1012.
  • [36] M. Ohtsuka, Sur un espace complet de mesures positives dans la théorie du potentiel, Proc. Japan Acad. 32 (1956), 311-313.
  • [37] M. Ohtsuka, On potentials in locally compact spaces, J. Sci. Hiroshima Univ. Ser. A-1 25 (1961), 135-352.
  • [38] E. B. Saff and V. Totik, Logarithmic Potentials with External Fields, Springer, Berlin, 1997.
  • [39] N. Zorii, An extremal problem of the minimum of energy for space condensers, Ukrainian Math. J. 38 (1986), 365-369.
  • [40] N. Zorii, A problem of minimum energy for space condensers and Riesz kernels, Ukrainian Math. J. 41 (1989), 29-36.
  • [41] N. Zorii, Interior capacities of condensers in locally compact spaces, Potential Anal. 35 (2011), 103-143.
  • [42] N. Zorii, Constrained energy problems with external fields for vector measures, Math. Nachr. 285 (2012), 1144-1165.
  • [43] N. Zorii, Equilibrium problems for infinite dimensional vector potentials with external fields, Potential Anal. 38 (2013), 397-432.
  • [44] N. Zorii, Necessary and sufficient conditions for the solvability of the Gauss variational problem for infinite dimensional vector measures, Potential Anal. 41 (2014), 81-115.
  • [45] N. Zorii, A theory of inner Riesz balayage and its applications, arXiv:1910.09946 (2019).
Uwagi
Dedicated to the memory of Professor Bogdan Bojarski
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e072a5fc-4319-463a-80fd-ecc8a6d570c4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.