PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental and numerical investigation on the fundamental natural frequency of a sandwich panel including the effect of ambient air layers

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Due to the advanced lightweight characteristic of sandwich structures, ambient air can significantly affect their natural frequency. In order to clarify the importance and magnitude of this effect, the natural frequency of a sandwich panel surrounded by air layers using experiment and numerical simulation was investigated in this study. The experiment setup based on modal testing was proposed with the feature of simulating air layers around the sandwich panel. The numerical simulation was formulated on the basis of fluid–structure interaction analysis. The experimental and numerical simulation results correspondingly demonstrated that the fundamental natural frequency of sandwich panel tends to decrease to be less than 25% of the frequency neglecting the air effect when the air layer thickness becomes thinner than 3 mm.
Rocznik
Strony
658--668
Opis fizyczny
Bibliogr. 33 poz.., rys., tab., wykr.
Twórcy
  • Department of Aerospace Engineering, Tokyo Metropolitan University, Tokyo, Japan
autor
  • Department of Aerospace Engineering, Tokyo Metropolitan University, Tokyo, Japan
Bibliografia
  • [1] S.M. Hasheminejad, A. Shahsavarifard, M. Shahsavarifard, Dynamic viscoelastic effects on free vibrations of a submerged fluid-filled thin cylindrical shell, Journal of Vibration and Control 14 (2008) 849–865.
  • [2] J. Hohe, Effect of core and face sheet anisotropy on the natural frequencies of sandwich shells with composite faces, International Journal of Composite Materials 3 (2013) 40–52.
  • [3] F. Ebrahimi, N.F. nia, Thermo-mechanical vibration analysis of sandwich beams with functionally graded carbon nanotube-reinforced composite face sheets based on a higher-order shear deformation beam theory, Mechanics of Advanced Materials and Structures (2016) 1–37.
  • [4] M.M. Alipour, An analytical approach for bending and stress analysis of cross/angle-ply laminated composite plates under arbitrary non-uniform loads and elastic foundations, Archives of Civil and Mechanical Engineering 16 (2016) 193– 210.
  • [5] M.M. Alipour, Effects of elastically restrained edges on FG sandwich annular plates by using a novel solution procedure based on layerwise formulation, Archives of Civil and Mechanical Engineering 16 (2016) 678–694.
  • [6] Y. Wu, S. Li, S. Liu, H.-S. Dou, Z. Qian, Vibration of Hydraulic Machinery, Springer Netherlands, Dordrecht, 2013 http://link. springer.com/10.1007/978-94-007-6422-4 (accessed 02.11.15).
  • [7] Benson H. Tongue, Principles of Vibration, 2nd ed., Oxford University Press, 2002.
  • [8] J.P. Den Hartog, Mechanical Vibrations, Dover Publications, United States, 1985.
  • [9] William T. Thomson, Marie Dillon Dahleh, Theory of Vibration with Applications, 5th edition, Prentice Hall, 1998.
  • [10] D.J. Mead, S. Markus, The forced vibration of a three-layer, damped sandwich beam with arbitrary boundary conditions, Journal of Sound and Vibration 10 (1969) 163–175.
  • [11] R.A. DiTaranto, Theory of Vibratory Bending for Elastic and Viscoelastic Layered Finite-Length Beams, Journal of Applied Mechanics 32 (1965) 881–886.
  • [12] A.C. Nilsson, Wave propagation in and sound transmission through sandwich plates, Journal of Sound and Vibration 138 (1990) 73–94.
  • [13] D.J. Mead, A comparison of some equations for the flexural vibration of damped sandwich beams, Journal of Sound and Vibration 83 (1982) 363–377.
  • [14] D.K. Rao, Vibration of short sandwich beams, Journal of Sound and Vibration 52 (1977) 253–263.
  • [15] E. Nilsson, A.C. Nilsson, Prediction and measurement of some dynamic properties of sandwich structures with honeycomb and foam cores, Journal of Sound and Vibration 251 (2002) 409–430.
  • [16] D. Backström, A.C. Nilsson, Modelling the vibration of sandwich beams using frequency-dependent parameters, Journal of Sound and Vibration 300 (2007) 589–611.
  • [17] S. Cheng, P. Qiao, F. Chen, W. Fan, Z. Zhu, Free vibration analysis of fiber-reinforced polymer honeycomb sandwich beams with a refined sandwich beam theory, Journal of Sandwich Structures and Materials (2015), http://dx.doi.org/ 10.1177/1099636215619841.
  • [18] Henrique Hiroshi Kanematsu, Yoichi Hirano, Hisashi Iyama, Bending and vibration of CFRP-faced rectangular sandwich plates, Composite Structures 10 (1988) 145–163.
  • [19] I. Peeters, H. Sol, Identification of the dynamic material properties of composite sandwich panels with a mixed numerical/experimental technique, in: H. Sol, C.W.J. Oomens (Eds.), Mater. Identif. Using Mix. Numer. Exp. Methods, Springer Netherlands, 1997 31–39, http://link. springer.com/chapter/10.1007/978-94-009-1471-1_4 (accessed 20.10.15).
  • [20] M.M. Alipour, M. Shariyat, An analytical global–local Taylor transformation-based vibration solution for annular FGM sandwich plates supported by nonuniform elastic foundations, Archives of Civil and Mechanical Engineering 14 (2014) 6–24.
  • [21] J.F. Sigrist, Fluid-structure Interaction: An Introduction to Finite Element Coupling, John Wiley & Sons, 2015.
  • [22] W.M. Beltman, P.J.M. van der Hoogt, R.M.E.J. Spiering, H. Tijdeman, Implementation and experimental validation of a new viscothermal acoustic finite element for acousto-elastic problems, Journal of Sound and Vibration 216 (1998) 159–185.
  • [23] M. Chimeno Manguán, E. Roibás Millán, J. López-Díez, F. Simón, Numerical modelling of structures with thin air layers, Aerospace Science and Technology 38 (2014).
  • [24] C.A. Powell, D.G. Stephens, Vibrational characteristics of sandwich panels in a reduced-pressure environment, 1966 http://ntrs.nasa.gov/search.jsp?R=19660024166 (accessed 15.03.16).
  • [25] C.A. Powell, D.G. Stephens, Vibration of sandwich panels in a vacuum, 1966 http://ntrs.nasa.gov/search.jsp?R=19680065641 (accessed 15.03.16).
  • [26] J.C. Heinrich, B.R. Dyne, On the Penalty Method for Incompressible Fluids, in: E. Oñate, J. Periaux, A. Samuelsson (Eds.), Finite Elem. Method 1990's, Springer Berlin Heidelberg, 1991 465–476, http://link.springer.com/ chapter/10.1007/978-3-662-10326-5_46 (accessed 11.12.14).
  • [27] T.J.R. Hughes, W.K. Liu, A. Brooks, Finite element analysis of incompressible viscous flows by the penalty function formulation, Journal of Computational Physics 30 (1979) 1–60.
  • [28] R.M.S.M. Schulkes, Interactions of an elastic solid with a viscous fluid: Eigenmode analysis, Journal of Computational Physics 100 (1992) 270–283.
  • [29] H.R. Öz, Calculation of the natural frequencies of a beam– mass system using finite element method, Mathematical and Computational Applications 5 (2000) 67–76.
  • [30] E.P.D. of, A.M.U. Grenander, U. Grenander, Mathematical Experiments on the Computer, Academic Press, 1982.
  • [31] R.S. Martin, J.H. Wilkinson, Similarity Reduction of a General Matrix to Hessenberg Form, in: P.D.F.L. Bauer (Ed.), Linear Algebra, Springer Berlin Heidelberg, 1971 339–358, http://link. springer.com/chapter/10.1007/978-3-662-39778-7_24 (accessed 27.02.15).
  • [32] B.N. Parlett, C. Reinsch, Balancing a matrix for calculation of eigenvalues and eigenvectors, in: P.D.F.L. Bauer (Ed.), Linear Algebra, Springer Berlin Heidelberg, 1971 315–326, http://link. springer.com/chapter/10.1007/978-3-662-39778-7_22 (accessed 27.02.15).
  • [33] G. Peters, J.H. Wilkinson, Eigenvectors of real and complex matrices by LR and QR triangularizations, in: P.D.F.L. Bauer (Ed.), Linear Algebra, Springer Berlin Heidelberg, 1971 372–395, http://link.springer.com/chapter/10.1007/ 978-3-662-39778-7_26 (accessed 27.02.15).
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e072553c-24fa-420c-a9f7-ae18c078f212
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.