PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Peripheral blood smear analysis using image processing approach for diagnostic purposes: A review

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Peripheral blood smear analysis is a common practice to evaluate health status of a person. Many disorders such as malaria, anemia, leukemia, thrombocytopenia, sickle cell anemia etc., can be diagnosed by evaluating blood cells. Many groups have reported methods to automate blood smear analysis for detection of specific disorders for diagnostic purposes. In this paper,we have summarized the methods used to analyze peripheral blood smears using image processing techniques. We have categorized these methods into three groups based on approaches such as WBC analysis, RBC analysis and platelet analysis. We conclude that there is a need for a method of automation to match with human evaluation process and rule out any abnormality present in the blood smear. It is desirable for studies on automation of peripheral blood smear analysis to focus on development of robust method to handle illumination and color shade variations. Also, it is desirable to design a method which could collect all the abnormal regions from all views of a specimen to limit the manual evaluation to those regions making it more feasible for telemedicine applications.
Twórcy
autor
  • School of Information Sciences, Manipal University, Manipal, India
autor
  • School of Information Sciences, Manipal University, Manipal 576104, India
autor
  • School of Information Sciences, Manipal University, Manipal, India
autor
  • Department of Pathology, A J Institute of Medical Sciences and Research Center, Kuntikana, Mangalore, India
Bibliografia
  • [1] Loffler H, Rastetter J, Haferlach T. Atlas of clinical hematology. Sixth ed. Springer; 2005.
  • [2] Them H, Diem H, Haferlach T. Color atlas of hematology, practical microscopic and clinical diagnosis. Second revised ed. Thieme; 2004.
  • [3] A. Sarah, A. Shaden,White blood cells, Hematology team. URL http://ksumsc.com/download_center/Archive/2nd/431/03% 20Haematology/Teams/Haematology/White%20Blood%20Cells.pdf.
  • [4] Vinay K, Abul A, Aster J. Robbins and cotran pathologic basis of disease. 9th ed. Elsevier; 2014.
  • [5] K. Lydia (2015). http://www.healthline.com/health/blood-smear.
  • [6] Dan LL. Atlas of hematology and analysis of peripheral blood smears. McGraw-Hill; 2012.
  • [7] Adnan K. IBCIS: intelligent blood cell identification system. Prog Nat Sci 2008;18:1309–14.
  • [8] Suzanne M. Medicare payments for clinical diagnostic laboratory tests in 2015: year 2 of baseline data; 2015.
  • [9] Rege VM, Gawli WB. Detection of leukemia in human blood sample through image processing: a review. Int J Mod Trends Eng Res 2015;2:363–9.
  • [10] Adewoyin SA, Nwogoh B. Peripheral blood film – a review. Ann Ibadan Postgrad Med 2014;12(2):71–9.
  • [11] Vale AMPG, Guerreiro AMG, Neto ADD, Junior GBC, de Sa Leitao VCLT, Martins AM. Automatic segmentation and classification of blood components in microscopic images using a fuzzy approach. Braz J Biomed Eng 2014;30:341–54.
  • [12] Nicola R, James C. Segmentation and border identification of cells in images of peripheral blood smear slides. Proceedings of the Thirtieth Australasian Conference on Computer Science, vol. 62; 2007. p. 161–9.
  • [13] Sanaullah K, Aamir K, Faisal K. An accurate and cost effective approach to blood cell count. Int J Comput Appl 2012;50(1):18–24.
  • [14] Hemant T, Rashmi G, Rajiv K. An improved methodology for blood cell counting. Proceedings of IEEE conference on Multimedia, Signal Processing and Communication Technologies (IMPACT); 2013. p. 88–92. http://dx.doi.org/10.1109/MSPCT.2013.6782094.
  • [15] Prabakaran K, Imran MEF, Mohammed Abrar N, Mohammed Abbas F, Salman Khurshid S. A smart sensing and quantification of platelets, red blood cells (RBC), white blood cells (WBC) and classification of WBCs using microscopic blood image. Int J Appl Med Sci Res 2015;1:1–9.
  • [16] Swapnali PP, Mayuri S, Varsha G, Kajal A, Jadhawar B. Cell counting and particle analysis from image captured by using microscope. Int J Adv Res Comput Commun Eng 2016;5(3):763–6.
  • [17] Pooja PR, Sable SG, Gauri A. Counting of WBCs and RBCs from blood images using gray thresholding. Int J Res Eng Technol 2014;3:391–5.
  • [18] Yazan AM, Siti HSA, Azma Rz, Khairuddin O. Automatic detection and quantification of WBCs and RBCs using iterative structured circle detection algorithm. Comput Math Methods Med 2014;17.
  • [19] Habibzadeh M, Krzyzak A, Fevens T, Sadr A. Counting of RBCs and WBCs in noisy normal blood smear microscopic images. Proc SPIE Med Imaging: Comput Aid Diagnosis 2011;7963:11. http://dx.doi.org/10.1117/12.878748.
  • [20] Bhagavathi LS, Thomas Niba S. An automatic system for detecting and counting RBC and WBC using fuzzy logic. ARPN J Eng Appl Sci 2016;11(11):6891–4.
  • [21] Akshaya SP. Counting of RBC and WBC using image processing: a review. Int J Res Eng Technol 2016;5:356–60.
  • [22] Robiyanti A, Mashor YM, Mohd Nasir NF, Rosline H, Mahsin H, Adilah H. Blood cell image segmentation: a review. IFMBE Proceedings of Fourth Kuala Lumpur International Conference on Biomedical Engineering, vol. 21; 2008. p. 141–4.
  • [23] Bhende GP. Analysis of blood cells using image processing. Int J Sci Technol 2012;2:59–64.
  • [24] Pramit G, Debotosh B, Mita N, Dipak Kumar B. Automatic white blood cell measuring aid for medical diagnosis. Proceedings of IEEE International Conference on Process Automation, Control and Computing; 2011. p. 1–6. http://dx.doi.org/10.1109/PACC.2011.5978895.
  • [25] Sheng-Fuu L, Yu-Bi H. Differential count of white blood cell in noisy normal blood smear. Proceedings of 7th IEEE Conference on Industrial Electronics and Applications (ICIEA); 2012. p. 1784–9.
  • [26] Andrea L, Lorenzo P, Di Cecilia R, Gianni F. A computeraided system for differential count from peripheral blood cell images. Proceedings of 12th International Conference on Signal-Image Technology Internet-Based Systems (SITIS); 2016. p. 112–8.
  • [27] Sinha N, Ramakrishnan AG. Automation of differential blood count. Proceedings of IEEE Conference on Convergent Technologies for the AsiaPacific Region, vol. 2; 2003. p. 547–51.
  • [28] Nisha R, Bryan D, Salama ME, Tolga T. Isolation and twostep classification of normal white blood cells in peripheral blood smears. J Pathol Inform 2012;3:10. http://dx.doi.org/10.4103/2153-3539.93895.
  • [29] Omid S, Hossein R, Ardeshir T, Hossein Yousefi B. Selection of the best features for leukocytes classification in blood smear microscopic images. Proc SPIE 2014;9041:8. http://dx.doi.org/10.1117/12.2043605.
  • [30] Theera-Umpon N. White blood cell segmentation and classification in microscopic bone marrow images. Proceedings of Second International Conference on Fuzzy systems and Knowledge Discovery Part II; 2005. p. 787–96.
  • [31] Lorenzo P, Di Cecilia R. White blood cells identification and counting from microscopic blood image. Int J Med Health Biomed Bioeng Pharm Eng 2013;7(1):20–7.
  • [32] Donida Labati R, Piuri V, Scotti F. ALL-IDB: the acute lymphoblastic leukemia image database for image processing; 2011;2045–8. http://dx.doi.org/10.1109/ICIP.2011.6115881.
  • [33] Dipti M, Prasad R, Nilanjan A, Scott T. Level set analysis for leukocyte detection and tracking. IEEE Trans Image Process 2004;13(4):562–72.
  • [34] Hiremath SP, Parashuram B, Sai G. Automated identification and classification of white blood cells (leukocytes) in digital microscopic images. IJCA special issue on recent trends in image processing and pattern recognition. 2010. pp. 59–63.
  • [35] Kim K, Jeon J, Choi W, Kim P, Ho Y-S. Automatic cell classification in humans peripheral blood images based on morphological image processing. Adv Artif Intell Series Lect Notes Comput Sci 2001;2256:225–36.
  • [36] Sedat N, Deniz K, Tuncay E, Murat Husnu S, Osman K, Yavuz E. Automatic segmentation, counting, size determination and classification of white blood cells. J Meas 2014;55:58–65.
  • [37] Jaroonrut P, Charnchai P. Segmentation of white blood cells and comparison of cell morphology by linear and Naive Bayes classifiers. Biomed Eng Online 2015;14(63):63. http://dx.doi.org/10.1186/s12938-015-0037-1.
  • [38] Sawsan BF, Ahmed DM, Hany TA, Samir SI. Segmentation and classification of white blood cells. Proceedings of IEEE International Conference on Acoustic, Speech, and Signal Processing, vol. 4; 2000. p. 2259–61.
  • [39] Firdaus Ismail S. White blood cell segmentation for fresh blood smear images. Proceedings of IEEE Conference on Advanced Computer Science and Information Systems; 2013. p. 425–9.
  • [40] Bakht A, Rashid Jalal Q, Zahoor J, Taj Ali K. Color based segmentation of white blood cells in blood photomicrographs using image quantization. Res J Recent Sci 2014;3(4):34–9.
  • [41] Leyza Baldo D, Rodrigo M, Neucimar Jeronimo L. White blood cell segmentation using morphological operators and scale-space analysis. Proceedings of IEEE XX Brazilian Symposium on Computer Graphics and Image Processing; 2007. p. 294–304. http://dx.doi.org/10.1109/SIBGRAPI.2007.33.
  • [42] Madhloom TH, Kareem AS, Ariffin H, Zaidan AA, Alanazi OH, Zaidan BB. An automated white blood cell nucleus localization and segmentation using image arithmetic and automatic threshold. J Appl Sci 2010;10(11):959–66.
  • [43] Mazin OZ, Alaa AB. Segmentation and feature extraction of lymphocytes WBC using microscopic images. Int J Eng Res Technol 2014;3:696–701.
  • [44] Nemane BJ, Chakkarwar AV, Lahoti BP. White blood cell segmentation and counting using global threshold. Int J Emerg Technol Adv Eng 2013;3:639–43.
  • [45] Rezatofighi SH, Soltanian-Zadeh H. Automatic recognition of five types of white blood cells in peripheral blood. Comput Med Imaging Graph 2011;35:333–43.
  • [46] Mathur A, Tripathi S, Kuse AM. Scalable system for classification of white blood cells from leishman stained blood stain images. J Pathol Inf 2013;4(Suppl.):S15. http://dx.doi.org/10.4103/2153-3539.109883.
  • [47] Nurhanis Izzati CM, Nasrul Humaimi M, Mohd Azhar AR. Segmentation of white blood cell nucleus using active contour. J Teknol 2015;74(6):115–8.
  • [48] Rong C, Xiaoqin Z, Lixin H, Min W. Subimage cosegmentation in a single white blood cell image. Proceedings of IEEE 7th International Conference on Computational Intelligence, Communication Systems and Networks; 2015. p. 152–7. http://dx.doi.org/10.1109/CICSyN.2015.36.
  • [49] Yiping Y, Yiping C, Wenxian S. A method of leukocyte segmentation based on S component and B component images. J Innov Opt Health Sci 2014;7(1):1–8. http://dx.doi.org/10.1142/S1793545814500072.
  • [50] Congcong Z, Xiaoyan X, Xiaomei L, Ying-Jie C, Wu Z, Jun C, et al. White blood cell segmentation by color-spacebased k-means clustering. Sensors (Basel) 2014;14(9):16128–47. http://dx.doi.org/10.3390/s140916128.
  • [51] Wang S, Wang M. A new detection algorithm (NDA) based on fuzzy cellular neural networks for white blood cell detection. IEEE Trans Inf Technol Biomed 2006;10(1):5–10.
  • [52] Ravikumar S, Shanmugam A. Wbc image segmentation using modified fuzzy possibilistic c-means algorithm. J Theoret Appl Inf Technol 2014;63(2):315–23.
  • [53] Der HC, Kun HD, Yung CK. A computer assisted method for leukocyte nucleus segmentation and recognition in blood smear images. J Syst Softw 2012;85:2104–18.
  • [54] Jianwei Z, Minshu Z, Zhenghua Z, Jianjun C, Feilong C. Automatic detection and classification of leukocytes using convolutional neural networks. Med Biol Eng Comput 2017;55(8):12871301.
  • [55] Shahin AI, Guo Y, Amin KM, Sharawi AA. White blood cells identification system based on convolutional deep neural learning networks. Comput Methods Prog Biomed 2017. http://dx.doi.org/10.1016/j.cmpb.2017.11.015.
  • [56] Reta LC, Altamirano A, Gonzalez J, Diaz R, Guichard SJ. Leukocytes segmentation using Markov random fields. Adv Exp Med Biol 2011;696:345–53.
  • [57] Hayan MT, Sameem Abdul K, Hany A. An image processing application for the localization and segmentation of lymphoblast cell using peripheral blood images. J Med Syst 2012;36:2149–58. http://dx.doi.org/10.1007/s10916-011-9679-0.
  • [58] Salim A, Emel O, Cigdem Gunduz D. A color and shape based algorithm for segmentation of white blood cells in peripheral blood and bone marrow images. J Int Soc Adv Cytom Cytom A 2014;85A:480–90.
  • [59] Kalaiselvi C, Asokan R, Premkumar R. Modified segmentation algorithm and its feature extraction of cancer affected white blood cells. Proceedings of IEEE International Conference on Circuit Power and Computing Technologies; 2014. p. 1202–10.
  • [60] Yan L, Rui LeiMi Z, Yihui C, Di Y. Segmentation of white blood cell from acute lymphoblastic leukemia images using dual-threshold method. Comput Math Methods Med 2016;1–12.
  • [61] Ramin S, Hossein R, Ardeshir T. Extraction of nucleolus candidate zone in white blood cells of peripheral blood smear images using curvelet transform. Comput Math Methods Med 2012;1–12.
  • [62] Farnoosh S, Zainina S, Abdul Rahman R, Badrul Hisham AK, Iqbal SM. A frame work for white blood cell segmentation in microscopic blood images using digital image processing. Biol Proc Online 2009;11:196–206. http://dx.doi.org/10.1007/s12575-009-9011-2.
  • [63] Biji G, Hariharan S. White blood cell segmentation techniques in microscopic images for leukemia detection. IONS J Dent Med Sci 2016;15:45–51.
  • [64] Morteza Moradi A, Saeed K, Ardeshir T, Mostafa Ghelich O. Recognition of acute lymphoblastic leukemia cells in microscopic images using k-means clustering and support vector machine classifier. J Med Signals Sens 2015;5:49–58.
  • [65] Vanika S, Preety S. Local binary pattern for automatic detection of acute lymphoblastic leukemia. Proceedings of IEEE Twentieth National Conference on Communications; 2014. p. 1–5.
  • [66] Siew Chin N, Worawut S, Li Z, Stephen T, Brigit G, Chee Peng L, et al. An intelligent decision support system for leukaemia diagnosis using microscopic blood images. Sci Rep 2015;5:14. http://dx.doi.org/10.1038/srep14938.
  • [67] Subrajeet M, Dipti P, Sanghamitra S. Unsupervised blood microscopic image segmentation and leukemia detection using color based clustering. Int J Comput Inf Syst Ind Manag Appl 2012;4:477–85.
  • [68] Angulo J, Klossa J, Flandrin G. Ontology-based lymphocyte population description using mathematical morphology on colour blood images. Cell Mol Biol 2006;52(6):2–15.
  • [69] Minal JD, Karode HA, Suralkar RS. Detection of acute leukemia using white blood cells segmentation based on blood samples. Int J Electron Commun Eng Technol 2013;4:148–53.
  • [70] Nagabhushana MR, Rajeshwari P. Geometrical analysis of leukocyte nucleus to detect lymphoblast from microscopic blood images. Int J Technol Eng Sci 2014;2(6):1947–51.
  • [71] Stanislaw O, Robert S, Tomasz M, Krzysztof S. Application of support vector machine and genetic algorithm for improved blood cell recognition. IEEE Trans Instrum Meas 2009;58(7):2159–68.
  • [72] Carolina R, Leopoldo A, Jesus G, Raquel AH, Diaz P, Hayde O, et al. Segmentation and classification of bone marrow cells images using contextual information for medical diagnosis of acute leukemias. PLoS ONE 2015;10(6). http://dx.doi.org/10.1371/journal.pone.0130805.
  • [73] Esti SW, Nizomjon P. Identification and counting white blood cells and red blood cells using image processing case study of leukemia. Int J Comput Sci Netw Solut 2014;2(6):35–49.
  • [74] Jyoti R, Annapurna S, Bhadauria SH, Jitendra V, Jagtar DS. Computer assisted classification framework for prediction of acute lymphoblastic and acute myeloblastic leukemia. Biocybern Biomed Eng 2017;37:637–54.
  • [75] Nikitaev GV, Nagornov VO, Pronichev NA, Polyakov VE, Dmitrieva VV. The blood smear image processing for the acute leukemia diagnostics. Int J Biol Biomed Eng 2016;10:109–14.
  • [76] Khot TS, Sneha B, Divya J, Dolly R. An innovative approach in myelogenous leukemia detection using attribute analysis. Int J Adv Electr Electron Eng 2013;2:43–6.
  • [77] Sos A, Monica M, Anthony CT. Automated screening system for acute myelogenous leukemia detection in blood microscopic images. IEEE Syst J 2014;8(3):995–1004.
  • [78] Jesly J, Kavitha NN. Automated acute myelogenous lukemia detection in blood microscopic image. Int J Sci Res 2015;4:1136–9.
  • [79] Daniela Mayumi US, da Luciano FC, Edgar RG, Marco ZA. A texture approach to leukocyte recognition. J Real Time Imaging 2004;10:205–16.
  • [80] Niranjan C, Sini S. Analysis of blood samples for counting leukemia cells using support vector machine and nearest neighbor. IONS J Comput Eng 2014;16:79–87.
  • [81] Himali VP, Hardik M, Manoj P, Potdar BM. Leukemia detection using digital image processing techniques. Int J Appl Inf Syst 2015;10:43–51.
  • [82] Chastine F, Martin TL, Fei Y, Janet BP, Rahmat WM, Fangyan D, et al. Fuzzy feature representation for white blood cell differential counting in acute leukemia diagnosis. Int J Control Autom Syst 2015;13(3):742–52. http://dx.doi.org/10.1007/s12555-012-0393-6.
  • [83] Swarnalatha P, Anbarasi M, Aman S, Ganesh M. Prediction of leukaemia cancer images using parallel saliency algorithm. Int J Pharma Bio Sci 2015;6(2):226–32.
  • [84] Fauziah K, Anton Satria P, Azizi A. Detection of leukemia in human blood sample based on microscopic images: a study. J Theor Appl Inf Technol 2005;46(2):579–86.
  • [85] Jaspreet K, Amita C. Comparison of several contrast stretching techniques on acute leukemia images. Int J Eng Innov Technol 2012;2:332–5.
  • [86] David FJ, Dorin C, Peter M, Lauri GA. Computer-assisted discrimination among malignant lymphomas and leukemia using immunophenotyping, intelligent image repositories, and telemicroscopy. IEEE Trans Inf Technol Biomed 2000;4(4):265–73.
  • [87] Lin Y, Peter M, David FJ. Unsupervised segmentation based on robust estimation and color active contour models. IEEE Trans Inf Technol Biomed 2005;9(3):475–86.
  • [88] Nikita OV, Wayne CW, David E, Mark M, Tomasz J, Lior S, et al. Automatic classification of lymphoma images with transform-based global features. IEEE Trans Inf Technol Biomed 2010;14(4):1003–13.
  • [89] Yan T, Liu Q, Wei Q, Chen F, Deng T. Classification of lymphoma cell image based on improved SVM. Proceedings of the 2nd International Conference on Applied Biotechnology (ICAB), vol. 1; 2015. p. 199–208.
  • [90] Razali T, Wan WZ, Nurshzwani, Rafidah N, Mohd Helmy AW. Red blood cell counting analysis by considering an overlapping constraint. ARPN J Eng Appl Sci 2015;10 (3):1413–20.
  • [91] Mausumi M, Rahul Kumar G, Manali M. Detection and counting of red blood cells in blood cell images using hough transform. Int J Comput Appl 2012;53(16):18–22.
  • [92] Siti Madihah M, Nasrul Humaimi M, Mohd Azhar AR. Automated red blood cells counting in peripheral blood smear image using circular Hough transform. Proceedings of IEEE First International Conference on Artificial Intelligence, Modelling and Simulation; 2013. p. 285–9. http://dx.doi.org/10.1109/AIMS.2013.59.
  • [93] Karthikeyan K, Brharama NK. Detection and counting of red blood cells using Hough transform technique. Int J Adv Eng 2015;1(8):622–5.
  • [94] Najiya Nasreen P, Chempak Kumar C, Asjad Nabeel P. Counting of RBCs using circular hough transform with median filtering. Proceeding of Third National Conference on Emerging Trends in Engineering. 2015. pp. 150–3.
  • [95] Xudong W, Yiping C, Guangkai F, Yapi W. A counting method for complex overlapping erythrocytes-based microscopic imaging. J Innov Opt Health Sci 2015;8(6):11. http://dx.doi.org/10.1142/S1793545815500339.
  • [96] Yi De M, Ro Lan D, Li L, Zai Fen Z. An counting and segmentation method of blood cell image with logical and morphological feature of cell. Chin J Electron 2002;11(1): 53–5.
  • [97] Somasekar J, Rama Mohan RA, Sreenivasulu Reddy L. An efficient algorithm for automatic malaria detection in microscopic blood images. Commun Comput Inf Sci Series Glob Trends Inf Syst Softw Appl 2012;270:431–40.
  • [98] Keerthana P, Jan W, Udayakrishna BM, Raviraja AV, Gopalakrishna PK. Image analysis approach for development of a decision support system for detection of malaria parasites in thin blood smear images. J Digit Imaging 2012;25:542–9. http://dx.doi.org/10.1007/s10278-011-9442-6.
  • [99] Selena SSW, Weiling S, Saravana K, Wong Zeng B, Soon Shan T, Sim Heng O, et al. Malaria count: an image analysis-based program for the accurate determination of parasitemia. J Microbiol Methods 2007;68:11–8.
  • [100] Kaushik C, Arnab C, Amlan C, Tinku A, Anjan Dkr. A combined algorithm for malaria detection from thick smear blood slides. J Health Med Inform 2015;6:1–6.
  • [101] Deepali GA, Chaya J. Automatic detection of malaria parasite from blood images. Int J Comput Sci Appl 2012;1(3):66–71.
  • [102] Savkare SS, Narote PS. Automatic detection of malaria parasites for estimating parasitemia. Int J Comput Sci Secur 2011;5:310–5.
  • [103] Luis R, Jose CdCM, Dirk E, Jaime CS. Automated detection of malaria parasites on thick blood smears via mobile devices. Proceedings of International Conference on Medical Imaging Understanding and Analysis, vol. 90; 2016. p. 138–44.
  • [104] Memeu DM, Amiga Kaduki K, Mjomba ACK, Samson Muriuki N, Gitonga L. Detection of plasmodium parasites from images of thin blood smears. Open J Clin Diagn 2013;3:183–94.
  • [105] Lalit DB, Krishna KR, Janwe JN, Thakur Nileshsingh V. Segmentation based approach to detect parasites and RBCs in blood cell images. Int J Comput Sci Appl 2011;4 (2):71–81.
  • [106] Nina L, Riku T, Margarita W, Andreas M, Vinod D, Esa R, et al. A malaria diagnostic tool based on computer vision screening and visualization of plasmodium falciparum candidate areas in digitized blood smears. PLOS ONE 2014;9:1–12.
  • [107] Kshipra C, Bairagi KV, Shama D, Sheetal B. A novel method for automatic detection of malaria parasite stage in microscopic blood image. Int J Comput Appl 2015;128 (17):32–7.
  • [108] Yashasvi P, Sirish SL, Gwen C, Areej A, Atis M. Automated and unsupervised detection of malarial parasites in microscopic images. Malaria J 2011;1–10. http://dx.doi.org/10.1186/1475-2875-10-364.
  • [109] Pallavi ST. Detection of malaria parasite in blood using image processing. Int J Eng Innov Technol 2013;2:124–6.
  • [110] Sneha CN. Malaria disease identification and analysis using image processing. Int J Latest Trends Eng Technol 2014;3:218–23.
  • [111] Muhammad RI. Automatic detection and classification of malarial parasite. Int J Biomet Bioinform 2015;9:1–12.
  • [112] Varsha W, Syed A. Image analysis based system for automatic detection of malarial parasite in blood images. Int J Sci Res 2015;4:984–7.
  • [113] Boray F, Tek D, Andrew G, Izzet K. Computer vision for microscopy diagnosis of malaria. Malaria J 2009;8(153):17. http://dx.doi.org/10.1186/1475-2875-8-153.
  • [114] Liang Z, Powell A, Ersoy I, Poostchi M, Silamut K, Palaniappan K, et al. Cnn-based image analysis for malaria diagnosis. Proceedings of IEEE International Conference on Bioinformatics and Biomedicine (BIBM); 2016. p. 493–6. http://dx.doi.org/10.1109/BIBM.2016.7822567.
  • [115] Gopalakrishna Pillai G, Murali SS, Gorthi S, Gorthi KSSR. Convolutional neural network-based malaria diagnosis from focus stack of blood smear images acquired using custom-built slide scanner. J Biophoton 2017;18. http://dx.doi.org/10.1002/jbio.201700003.
  • [116] Shashi B, Amit D. Automatic detection of sickle cell in red blood cell using watershed segmentation. Int J Adv Res Comput Commun Eng 2015;4:488–91.
  • [117] Manjula S, Rashmi JM, Varsha D. Sickle cell detection using marker-controlled watershed segmentation. Int J Adv Res Sci Eng 2015;4:345–8.
  • [118] Elsalamony AH. Sickle anemia and distorted blood cells detection using hough transform based on neural network and decision tree. Proceedings of International Conference on Image Processing, Computer, Vision, and Pattern Recognition; 2014. p. 45–51.
  • [119] Aruna SN, Hariharan S. Edge detection of sickle cells in red blood cells. Int J Comput Sci Inf Technol 2014;5(3):4140–4.
  • [120] Pranati R, Kriti B. Detection of abnormal findings in human RBC in diagnosing sickle cell anemia using image processing. Proceedings of International Conference on Computational Intelligence: Modelling, Techniques and Applications, vol. 10; 2013. p. 28–36.
  • [121] Hariharan S, Parvathy HB, Aruna SN. An overview of sickle cell anemia – a special emphasis on image processing on SEM images. Int J Appl Eng Res 2016;11(1):201–8.
  • [122] Chintawar AI, Aishvarya M, Pravin N, Chetan K. Detection of sickle cells using image processing. Int J Sci Technol Eng 2016;2:335–9.
  • [123] Menika S, Amit B, Kumar UK. Detection of sickle cell anemia in red blood cell: a review. Int J Eng Appl Sci 2015;2:45–8.
  • [124] Mengjia X, Dimitrios P, Sabia PA, Ming ZD, Hong Z, George K. A deep convolutional neural network for classification of red blood cells in sickle cell anemia. PLOS Comput Biol 2017;13(10). http://dx.doi.org/10.1371/journal.pcbi.1005746.
  • [125] Mo Z, Xiang L, Mengji X, Quanzheng L. Image segmentation and classification for sickle cell disease using deformable U-Net, cell behavior (q-bio.CB). Comput Vis Pattern Recogn 2017;10 (cs.CV) arXi**v:1710.08149v3 [qbio.CB].
  • [126] Chandrasiri S, Samarasinghe P. Automatic anemia identification through morphological image processing. Proceedings of IEEE 7th International Conference on Information and Automation for Sustainability; 2014. p. 1–5. http://dx.doi.org/10.1109/ICIAFS.2014.7069561.
  • [127] Khot TS, Prasad KR. Image analysis systemfor detection of red blood cell disorders using artificial neural network. Int J Eng Res Technol 2012;1:15.
  • [128] Mojtaba T, Mona N, Behzad B, Alireza M. New approach to red blood cell classification using morphological image processing. Shiraz E-Med J 2013;14(1):44–53.
  • [129] Westerman PM, Bacus WJ. Red blood cell morphology in sickle cell anemia as determined by image processing analysis: the relationship to painful crises. Am J Clin Pathol 1983;79(6):667–72.
  • [130] Razali T, Wan Nurshazwani WZ, Muhammad Mahadi AJ, Faridah Mohd N, Nik Farhan NF. Computer aided system for red blood cell classification in blood smear image. Procedia Comput Sci 2014;42:206–13.
  • [131] Nithyaa NA, Premkumar R, Kanchana D, Nalini KA. Automated detection and classification of blood diseases. Recent Adv Syst Model Appl 2013;188:393–404.
  • [132] Ching Lin W, Meng Hsiun T, Yung Kuan C, Yun Wei M, Wei Chieh C, Ko Wei L, et al. An blood smear image based anemia recognition system. Int J Sport Exerc Sci 2013;5 (2):19–28.
  • [133] Vishwas S, Adhiraj R, Garima V. Detection of sickle cell anaemia and thalassaemia causing abnormalities in thin smear of human blood sample using image processing. Proceedings of International Conference on Inventive Computation Technologies (ICICT), vol. 3; 2016. p. 1–5. http://dx.doi.org/10.1109/INVENTIVE.2016.7830136.
  • [134] Nurhanis Izzati BCM, Nasru Humaimi bM, Mohd Azhar bAR. Identification of thalassemia disorder using active contour. Indonesian J Electr Eng Comput Sci 2017;6(1):160–5.
  • [135] Dyah Aruming T, Agus H, Sri H. A survey of thalassemia identification. Int J Adv Sci Eng Technol 2017;5:61–6.
  • [136] Thomas SDJ, Eben OM, Wade SL, Richard T. Very deep convolutional neural networks for morphologic classification of erythrocytes. Clin Chem 2017;63(12):1847–55.
  • [137] Michal W, Michal G, Marek K, Agnieszka M, Mateusz F, Katarzyna K, et al. Computed aided system for separation and classification of the abnormal erythrocytes in human blood. Proc SPIE Biophoton 2017;10592:7. http://dx.doi.org/10.1117/12.2297218.
  • [138] Poornima J, Krishnaveni K. Detection of dengue fever with platelets count using image processing techniques. Indian J Sci Technol 2016;9(19):1–7.
  • [139] Ratnadeep D, Kaushiki R, Debotos B, Mita N, Pramit G. An automated system for segmenting platelets from microscopic images of blood cells. Proceeding of IEEE International Symposium on Advance Computing and Communication. 2015. pp. 230–7. http://dx.doi.org/10.1109/ISACC.2015.7377347.
  • [140] Robert B, Bartosz K. Automatic detection and counting of platelets in microscopic image. J Med Inform Technol 2010;16:173–8.
  • [141] Prabhjot K, Vishakha S, Nishtha G. Platelet count using image processing. Proceedings of 3rd International Conference on Computing for Sustainable Global Development (INDIACom); 2016. p. 2574–7.
  • [142] Scott RR, Katherine AB, Thomas CD, Rodney D, Hose L, Patricia V. A method for the automated processing and analysis of images of ULVWFplatelet strings. Platelets 2013;24(3):226–34.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e0683fb3-323a-4c7b-b3e0-6b18a86b650a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.