PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of saccharin addition on formation, wear and corrosion resistance of electrodeposited Ni-Cr coatings

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Numerous factors play a pivotal role in shaping the mechanical and corrosion resistance properties of electrodeposited Ni-Cr alloy coatings. This study delves into the deposition of Ni-Cr alloy coatings on AISI 1040 steel, examining the influence of saccharin additives within the electrodeposition bath. Specifically, the concentration of saccharin within the solution was varied over a range of 0 to 2 g/l. Following the electrodeposition process, a comprehensive array of characterization techniques was employed, encompassing 2D surface roughness analysis, scanning electron microscopy, X-ray diffraction, nanoindentation, energy-dispersive X-ray spectroscopy and assessments of wear and corrosion performance. The characterization results of this article reveal a compelling difference between saccharin-free Ni-Cr coatings and their saccharin-modified counterparts. Notably, microcracks, a common occurrence in saccharin-free coatings, were suppressed in the saccharin-modified Ni-Cr coatings. Additionally, the latter exhibited a smoother and more uniform surface texture. A crucial observation was that the introduction of saccharin into the bath was directly associated with an increased incorporation of chromium within the coatings, resulting in higher nanohardness values. Furthermore, the residual stress within the coatings shifted from tensile to compression as saccharin concentrations increased. Concurrently, surface roughness and wear rates exhibited a consistent downward trend with increasing saccharin concentrations in the solution. The most significant findings were seen in the domain of corrosion resistance. Saccharin-modified Ni-Cr coatings outperformed the bare steel substrate and saccharin-free Ni-Cr coatings. Intriguingly, the enhancement of corrosion resistance was not linearly proportional to saccharin concentration; the optimal corrosion resistance was achieved at a concentration of 1 g/l.
Słowa kluczowe
Wydawca
Rocznik
Strony
111--125
Opis fizyczny
Bibliogr. 48 poz., rys., tab.
Twórcy
autor
  • Department of Mechanical Engineering, Faculty of Engineering and Natural Sciences, Iskenderun Technical University Hatay, Turkey
  • Department of Mechanical Engineering, Faculty of Engineering and Natural Sciences, Iskenderun Technical University Hatay, Turkey
  • Department of Physics, Faculty of Arts and Sciences, Mustafa Kemal University Hatay, Turkey
Bibliografia
  • [1] Firouzi-Nerbin H Nasirpouri F, Moslehifard E. Pulse electrodeposition and corrosion properties of nanocrystalline nickel-chromium alloy coatings on copper substrate. J Alloys Compd. 2020;822:153712. doi: 10.1016/j.jallcom.2020.153712
  • [2] Sheibani Aghdam A, Allahkaram SRR, S. Mahdavi SRR. Corrosion and tribological behavior of Ni-Cr alloy coatings electrodeposited on low carbon steel in Cr (III)- Ni (II) bath. Surf Coat Technol. 2015;281:144–9. 2015, doi: 10.1016/j.surfcoat.2015.10.006
  • [3] Akhtar K, Khan KU, Gul M, Zubair N, Shah SSA. Electrodeposition and characterization of Ni-Al2O3 nanocomposite coatings on steel. J Mater Eng Perform. 2018;27(6):2827–37. doi: 10.1007/s11665-018-3346-2
  • [4] Kanani N. Electrolytes for the deposition of metal coatings. Electroplating. 2004;55–85. doi: 10.1016/b978-185617451-0/50003-8
  • [5] Schlesinger M, Paunovic M, eds. Modern electroplating, 5th ed. New Jersey: John Wiley & Sons, Inc., 2010.
  • [6] Djokic PL, Stojan S, Cavalloti, Electrodeposition’ in Modern apects of electrochemistry, no. 12. Singapore: Springer, p. 251–91. doi: 10.1007/978-1-4419-5589-0
  • [7] Altamirano-Garcia L, Vazquez-Arenas J, Pritzker M, Luna-Sánchez R, Cabrera-Sierra R. Effects of saccharin and anions (SO42-, Cl-) on the electrodeposition of Co–Ni alloys. J Solid State Electrochem. 2014;19(2): 423–33, 2014, doi: 10.1007/s10008-014-2616-7
  • [8] Wasekar NP, Haridoss P, Seshadri SK, Sundararajan G. Influence of mode of electrodeposition, current density and saccharin on the microstructure and hardness of electrodeposited nanocrystalline nickel coatings. Surf Coat Technol. 2016;291:130–40. doi: 10.1016/j.surfcoat.2016.02.024
  • [9] Das MK, et al. Effect of saccharin sodium on the microstructure and hardness of electrodeposited Ni-W coatings. Key Eng Mater. 2015;659:535–9. doi: 10.4028/www.scientific.net/KEM.659.535
  • [10] Tebbakh S, Messaoudi Y, Azizi A, Fenineche N, Schmerber G, Dinia A. The influence of saccharin on the electrodeposition and properties of Co-Ni alloy thin films. Trans Inst Met Finish. 2015;93(4):196–204. doi: 10.1179/0020296715Z.000000000247
  • [11] Mockute D, Bernotiene G, Vilkaite R. Reaction mechanism of some benzene sulfonamide and saccharin derivatives during nickel electrodeposition in Watts-type electrolyte. Surf Coat Technol. 2002;160(2–3):152–7. doi: 10.1016/S0257-8972(02)00385-7
  • [12] Pan B, Yang Y, Zhang Y, Zhang Q. Effects of saccharin and tetramethylammonium bromide on the microstructure and microhardness of thick cobalt electrodeposits. Surf Coat Technol. 2017;329:49–54. doi: 10.1016/j.surfcoat.2017.09.026
  • [13] Sekar R. Effect of saccharin and thiourea on electrodeposition of cobalt and characteristics of deposits. Trans Inst Met Finish. 2015;93(1):44–52. doi: 10.1179/0020296714Z.000000000194
  • [14] Singh DK, Tripathi MK, Singh VB. Electrolytic preparation of Ni-B 4 C composite coating and its characterization. J Mat Eng Perform. 2015. doi: 10.1007/s11665-015-1396-2
  • [15] Tabakovic I, Qiu J-M, Dragos O. Electrodeposition of thin CoPt films with very high perpendicular anisotropy from hexachloroplatinate solution: effect of saccharin additive and electrode substrate. J Electrochem Soc. 2016;163(7):D287–D294. doi: 10.1149/2.0491607jes
  • [16] Hu J, Zheng XG, Shi Y-N, Lu K. Effect of a mixture of saccharin and 2-butyne-1,4-diol on electrodeposition of nano-grained Ni-Mo alloys. J Electrochem Soc. 2017;164(6):D348–53. doi: 10.1149/2.1641706jes
  • [17] Mosavat SH, Bahrololoom ME, Shariat MH. Electrodeposition of nanocrystalline Zn-Ni alloy from alkaline glycinate bath containing saccharin as additive. Appl Surf Sci. 2011;257(20):8311–6. doi: 10.1016/j.apsusc.2011.03.017
  • [18] Nakamura K, Hayashi T. Effects of saccharin on the elelctrodeposition of Ni-Fe alloy films. Bull Univ Osaka Prefect,. Sers A Eng Natur Sci. 1983;32(1):27–36.
  • [19] Zheng M, Hilty RD. The synergic impact of saccharin and 2-butyne 1,4 diol on the electrodeposition of nanocrystalline NiW alloy. 2010;25(41):117–23. doi: 10.1149/1.3422505
  • [20] Wang Y et al. Effect of saccharin on the structure and properties of electrodeposition NiWP alloy coatings. J Mater Eng Perform. 2016;25(10):4402–7. doi: 10.1007/s11665-016-2298-7
  • [21] Ataee-Esfahani H, Vaezi MR, Nikzad L, Yazdani B, Sadrnezhaad SK. Influence of SiC nanoparticles and saccharin on the structure and properties of electrodeposited Ni-Fe/SiC nanocomposite coatings. J Alloys Compd. 2009;484(1–2):540–4. doi: 10.1016/j.jallcom. 2009.04.146
  • [22] Li YW, Huang XX, Yao JH, Deng XS. Effect of saccharin addition on the electrodeposition of nickel from a Watts-type electrolyte. Adv Mat Res. 2011;189–93:911–4. doi: 10.4028/www.scientific.net/AMR.189-193.911
  • [23] Demir M, Kanca E, Karahan IH. Characterization of electrodeposited Ni – Cr/hBN composite coatings. J Alloys Compd. 2020;844:155511. doi: 10.1016/j.jallcom.2020.155511
  • [24] Yang F, Li JCM. Micro and Nano Mechanical Testing of Materials and Devices. New York: Springer, 2008.
  • [25] World Trade Organization Technical Barriers to Trade (TBT) Committee. Standard Test Method for Wear Testing with a Pin-on-Disk Apparatus. 2023. doi: 10.1520/ G0099-17
  • [26] Günen A, Kurt B, Milner P, Gök MS. Properties and tribological performance of ceramic-base chromium and vanadium carbide composite coatings. Int J Refract Metals Hard Mater. 2019;81:333–44. doi: 10.1016/j.ijrmhm.2019.03.019
  • [27] Coþkun MI, Karahan IH, Golden TD, Computer assisted corrosion analysis of hydroxyapatite coated CoCrMo biomedical alloys. Surf Coat Technol. 2015;275:e1–e9. doi: 10.1016/j.surfcoat.2015.05.037
  • [28] Meudre C, Ricq L, Hihn JY, Moutarlier V, Monnin A, Heintz O. Adsorption of gelatin during electrodeposition of copper and tin-copper alloys from acid sulfate electrolyte. Surf Coat Technol. 2014;252:93–101. doi: 10.1016/j.surfcoat.2014.04.050
  • [29] Tavoosi M, Barahimi A. Corrosion behavior of amorphous – nanocrystalline Fe – Ni – Cr electrodeposited coatings. 2017;8:103–11.
  • [30] Wu W, Eliaz N, Gileadi E. Electrodeposition of Re-Ni alloys from aqueous solutions with organic additives. Thin Solid Films. 2016;616:828–37. doi: 10.1016/j.tsf. 2016.10.012
  • [31] Huang CA, Lin CK, Chen CY. Hardness variation and corrosion behavior of as-plated and annealed Cr-Ni alloy deposits electroplated in a trivalent chromium-based bath. Surf Coat Technol. 2009;203(24):3686–91. doi: 10.1016/j.surfcoat.2009.05.047
  • [32] Sadeghi; A. Microstructure evolution and strengthening mechanism in Ni-based composite coatings. PhD thesis. Chemnitz Univesity of Technology Germany; 2016.
  • [33] Suswanto BAK, Suchaimi M, Purwaningsih H, Rochiem R. Pengaruh jarak nozzle pada proses coating fecrbmnsi dengan metode wire arc spray terhadap ketahanan thermal. Prosiding Seminar Nasional Sains dan Teknologi, Tahun. 2017;35–40.
  • [34] Pillai AM, Rajendra A, Sharma AK. Electrodeposited nickel-phosphorous (Ni-P) alloy coating: an in-depth study of its preparation, properties, and structural transitions. J Coat Technol Res. 2012;9(6):785–97. doi: 10.1007/s11998-012-9411-0
  • [35] Hassani S, Raeissi K, Golozar MA. Effects of saccharin on the electrodeposition of Ni-Co nanocrystalline coatings. J Appl Electrochem. 2008;38(5):689–94. doi: 10.1007/s10800-008-9488-4
  • [36] Kim SH, et al., Effect of saccharin addition on the microstructure of electrodeposited Fe-36 wt.% Ni alloy. Surf Coat Technol. 2005;199(1):43–8. doi: 10.1016/j.surfcoat.2004.11.035
  • [37] Rezaei-Sameti M, Nadali S, Falahatpisheh A, Rakhshi M. The effects of sodium dodecyl sulfate and sodium saccharin on morphology, hardness and wear behavior of Cr-WC nano composite coatings. Solid State Commun. 2013;159:18–21. doi: 10.1016/j.ssc.2013.01.019
  • [38] Huber N, Heerens J. On the effect of a general residual stress state on indentation and hardness testing. Acta Mater. 2008;56(20):6205–13. doi: 10.1016/j.actamat. 2008.08.029
  • [39] Delgado-Brito AM, Contla-Pacheco AD, Castrejón-Sánchez VH, López-Suero H, Oseguera-Peña J, Campos-Silva I. Effect of the diffusion annealing process on the sliding wear resistance of cobalt boride layer. J Mater Eng Perform. 2020;29(1):109–25. doi: 10.1007/s11665-019-04538-6
  • [40] Oliver WC, Pharr GM. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res. 1992;7:1564–83. doi: 10.1177/0035915719 01200704
  • [41] Shahri Z, Allahkaram SR, Zarebidaki A. Electrodeposition and characterization of Co-BN (h) nanocomposite coatings. Appl Surf Sci. 2013;276:174–81. doi: 10.1016/j.apsusc.2013.03.062
  • [42] Günen A, et al. High temperature wear behavior of the surface-modified externally cooled rolls. Surf Coat Technol. 2018;348:130–41. doi: 10.1016/j.surfcoat.2018. 04.071
  • [43] Günen A, et al., Effect of borotitanizing on microstructure and wear behavior of Inconel 625. Surf Coat Technol. 2017;311:374–82. doi: 10.1016/j.surfcoat.2016.12.097
  • [44] Wasekar NP, Bathini L, Ramakrishna L, Rao DS, Padmanabham G. Pulsed electrodeposition, mechanical properties and wear mechanism in Ni-W/SiC nanocomposite coatings used for automotive applications. Appl Surf Sci. 2020;527:146896. doi: 10.1016/j.apsusc.2020.146896
  • [45] Liu C, Huang X, Xu R, Mai Y, Zhang L, Jie X. Microstructure and properties of nanocrystalline Ni-Mo coatings prepared by ultrasound-assisted pulse electrodeposition. J Mater Eng Perform. 2021;30(4):2514– 25. doi: 10.1007/s11665-021-05570-1
  • [46] Oliveira JAM, de Almeida AF, Campos ARN, Prasad S, Alves JJN, de Santana RAC. Effect of current density, temperature and bath pH on properties of Ni–W–Co alloys obtained by electrodeposition. J Alloys Compd. 2021;853:147104. doi: 10.1016/j.jallcom.2020.157104
  • [47] Tozar A, Karahan IH. A comprehensive study on electrophoretic deposition of a novel type of collagen and hexagonal boron nitride reinforced hydrox-yapatite/chitosan biocomposite coating. Appl Surf Sci. 2018;452:322–36. doi: 10.1016/j.apsusc.2018.04.241
  • [48] Buckley DH. Surface effects in adhesion, friction, wear and lubrication, vol. 85, no. 2. Ohio: Elsevier, 1981. doi: 10.1016/0043-1648(83)90069-8
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e062ebf8-bc8a-4038-85e5-fb4e8e30c4c8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.